Some CL-20 based energetic cocrystals - A review

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: cocrystal, HNIW, CL-20, explosive, nitramine


There exists an inherent contradiction between the energy density and safety of energetic materials. To ameliorate and get an accord between energy and safety, cocrystallization seems to be a remedy which has been getting quite popular in the field of energetic materials. Energetic cocrystals represent one of the most important classes of research advances in the area of energetic materials. The cocrystallization significantly improves performance of energetic cocrystals, such as density, solubility, sensitivity, and thermal stability. This mini review summaries some of CL-20 based energetic cocrystals in terms of various aspects of them.


Dong, H., & Zhou, F. (1994). Properties of high energetic explosives and relatives, Beijing: Science Press.

Türker, L. (2019). Nitramine derivatives of NTO – A DFT study. Earthline Journal of Chemical Sciences, 1(1), 45-63.

Türker, L. (2011). Recent developments in the theory of explosive materials, (In T.J. Jansen (Ed.)), Explosive materials, materials science and technologies). New York: Nova Science Pub.

Türker, L., & Variş, S. (2009). A review of polycyclic aromatic energetic materials. Polycyclic Aromatic Compounds, 29(4), 228-266.

Türker, L. (2019). Interaction of CL-20 and zinc - A DFT treatment. Earthline Journal of Chemical Sciences, 2(2), 205-215.

Türker, L. (2021). Some novel tricyclic caged-nitramines - A DFT study. Earthline Journal of Chemical Sciences, 5(1), 35-48.

Teipel, U. (2005). Energetic materials. Particle processing and characterization. WILEY-VCH Verlag GmbH & Co. KGaA.

Fried, L.E., Manaa, M.R., Pagoria, P.F., & Simpson, R.L. (2001). Design and synthesis of energetic materials. Annu. Rev. Mater. Res., 31, 291-321.

Gao, H.X., & Shreeve, J.M. (2011). Azole-based energetic salts. Chem. Rev., 111, 7377-7436.

Wang, X., Xu, K., Sun, Q., Wang, B., Zhou, C., & Zhao, F. (2015). The insensitive energetic material trifurazano-oxacycloheptatriene (TFO): Synthesis and detonation properties. Propellants, Explos., Pyrotech., 40, 9-12.

Talawar, M.B., Sivabalan, R., Senthilkumar, N., Prabhu, G., & Asthana, S.N. (2004). Synthesis, characterization and thermal studies on furazan- and tetrazine-based high energy materials. J. Hazard. Mater., 113, 11-25.

Chen, H., Li, L., Jin, S., Chen, S., & Jiao, Q. (2012). Effects of additives on ε-HNIW crystal morphology and impact sensitivity. Propellants, Explos., Pyrotech., 37, 77-82.

Wang, Q.Y., Feng, X., Wang, S., Song, N., Chen, Y., Tong, W., Han, Y., Yang, L., & Wang, B. (2016). Metal-organic framework templated synthesis of copper azide as the primary explosive with low electrostatic sensitivity and excellent initiation ability. Adv. Mater., 28, 5837-5843.

Xue, Z-H., Zhang, X-X., Huang, B. B., & Xin B. (2020). The structural diversity of hybrid qy-HMX crystals with constraint of 2D dopants and the resulted changes in thermal reactivity. Chem. Eng. J., 390, 124565.

Nangia, A. (2004). Nomenclature in crystal engineering. In J. L. Atwood & J. W. Steed (Eds.), Encyclopedia of supramolecular chemistry (Vol. 2). New York: Marcel Dekker.

Dunitz, J.D. (2003). Crystal and co-crystal: a second opinion. Cryst. Eng. Comm., 5, 506-506.

Vishweshwar, P., Mcmahon, J.A., Bis, J.A., & Zaworotko, M.J. (2006). Pharmaceutical co-crystals. J. Pharma. Sci., 95, 499-516.

Desiraju, G.R. (2003). Crystal and co-crystal. Cryst. Eng. Comm., 5, 466-467.

Aakeröy, C.B., & Salmon, D.J. (2005). Building co-crystals with molecular sense and supramolecular sensibility. Cryst. Eng. Comm., 7 (72), 439-448.

Liu, G.R., Li, H.Z., Gou, R.J., & Zhang, C. (2018). Packing structures of CL-20-based cocrystals. Cryst. Growth Des., 18, 7065-7078.

Liu, G., Wei, S-H., & Zhang, C. (2020). Review of the intermolecular interactions in energetic molecular cocrystals. Cryst. Growth Des., 20(10), 7065-7079.

Zhang, C., Xiong, Y., Jiao, F., Wang, M., & Li, H. (2019). Redefining the term of cocrystal and broadening its intension. Cryst. Growth Des., 19, 1471-1478.

Liu, K., Zhang, G., Chen, Z.Q., Luan, J., & Xu, M. (2014). Research progress of cocrystal energetic materials. Chemical Analysis and Meterage., 5, 139-142.

Fleischman, S.G., Kuduva, S.S., McMahon, J.A., Moulton, B., Bailey W., Rosa, D., Naír, R-H., & Zaworotko, M.J. (2003). Crystal engineering of the composition of pharmaceutical phases: Multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des., 3, 909-919.

Lara-Ochoa, F., & Espinosa-Perez, G. (2007). Cocrystals definitions. Supramol. Chem., 19, 553-557.

Aitipamula, S., Banerjee, R., Bansal, A.K., Biradha, K., Cheney, M. L., Choudhury, A.R., Desiraju, G.R., Dikundwar, A.G., Dubey, R., Duggirala, N., Ghogale, P.P., Ghosh, S., Goswami, P.K., Goud, N.R., Jetti, R.R.K.R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A.S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C.M., Rodriguez-Hornedo, Nair., Rogers, R.D., Row, T.N.G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C.C., Swift, J.A., Thaimattam, R., Thakur, T.S., Thaper, R.K., Thomas, S.P., Tothadi, S., Vangala, V.R., Variankaval, N., Vishweshwar, P., Weyna, D.R., & Zaworotko, M.J. (2012). Polymorphs, salts, and cocrystals: What’s in a name. Cryst. Growth Des., 12, 2147-2152.

Ma, Q., Huang, S., Lu, H., Nie, F., Liao, L., Fan, G., & Huang, J. (2019). Energetic cocrystal, ionic salt, and coordination polymer of a perchlorate free high energy density oxidizer: Influence of pKa modulation on their formation. Crystal Growth & Design, 19, 714-723.

Xue, Z-H., Huang, B., Li, H., & Yan, Q-L. (2020). Nitramine-based energetic cocrystals with improved stability and controlled reactivity. Crystal Growth & Design, 20 (12), 8124-8147.

Shan, N., & Zaworotko, M.J. (2008). The role of cocrystals in pharmaceutical science. Drug Discovery Today, 13, 440-446.

Bu, R.P., Xiong,Y.,Wei, X.F., Li, H., & Zhang, C. (2019). Hydrogen bonding in CHON- contained energetic crystals: A review. Cryst. Growth Des., 19, 5981-5997.

Ghosh, M., Sikder, A.K., Banerjee, S., & Gonnade, R.G. (2018). Studies on CL-20/HMX (2:1) Cocrystal: A new preparation method and structural and thermokinetic analysis. Cryst. Growth Des., 18, 3781-3793.

Parakhin, V.V., & Smirnov, G.A. (2024). Research progress on design, synthesis and performance of energetic polynitro hexaazaisowurtzitane derivatives: Towards improved CL-20 analogues. FirePhysChem., 4(1), 21-33. .

Gao, H., Du, P., Ke, X., Liu, J., Hao, G., Chen, T., & Jiang, W. (2017). A novel method to prepare nanosized CL-20/NQ co-crystal: vacuum freeze drying. Propellants, Explos., Pyrotech., 42, 889-895.

Landenberger, K.B., & Matzger, A.J. (2010). Cocrystal engineering of a prototype energetic material: Supramolecular chemistry of 2,4,6-trinitrotoluene. Cryst. Growth Des., 10, 5341-5347.

Liu, N., Duan, B., Lu, X., Mo, H., Xu, M., Zhang, Q., & Wang, B. (2018). Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation. Cryst. Eng. Comm., 20, 2060-7.

An, C., Li, H., Ye, B., & Wang, J. (2017). Nano-CL-20/HMX cocrystal explosive for significantly reduced mechanical sensitivity. J. Nanomater., 3791320-7.

Liu J., Yan, Z., Chi, D., & Yang, L. (2019). Synthesis of the microspheric cocrystal CL-20/2,4-DNI with high energy and low sensitivity by a spray-drying process. N.J. Chem., 43(44), 17390-4.

Qiu, H., Patel, R.B., Damavarapu, R.S., & Stepanov, V. (2015). Nanoscale 2CL-20.HMX high explosive cocrystal synthesized by bead milling. Cryst. Eng. Comm., 17(22), 4080-3.

Hu,Y., Yuan, S., Li, X., Liu, M., Sun, F., Yang, Y., Hao,G., & Jiang,W. (2020). Preparation and characterization of nano-CL-20/TNT cocrystal explosives by mechanical ball-milling method. ACS Omega., 5, 17761-6.

Huang, C., Xu, J., Tian, X., Liu, J., Pan, L., Yang, Z., & Nie, F. (2018). High-yielding and continuous fabrication of nanosized CL-20-based energetic cocrystals via electro spraying deposition. Cryst. Growth. Des., 18, 2121-8.

Liu, N., Duan, B., Lu, X., Mo, H., Bi, F., Wang B., Zhang, J., & Yan, Q-L. (2019). Rapid and high-yielding formation of CL-20/DNDAP cocrystals via self-assembly in slightly soluble-medium with improved sensitivity and thermal stability. Propell., Explos., Pyrot., 44, 1242-53.

Zhang, M., Tan, Y., Zhao, X., Zhang, J., Huang, S., Zhai, Z., Liu, Y., & Yang, Z. (2020). Seeking a novel energetic cocrystal strategy through the interfacial self-assembly of CL-20 and HMX nanocrystals. Cryst. Eng. Comm., 22, 61-7.

Li, L., Ling, H., Tao, J., Pei, C., & Duan, X. (2022). Microchannel-confined crystallization: shape-controlled continuous preparation of a high-quality CL-20/HMX cocrystal. Cryst. Eng. Comm., 24(8), 1523-8.

Viswanath, J.V., Shanigaram, B., Vijayadarshan, P., Chowadary, T.V., Gupta, A., Bhanuprakash, K., Niranjana, S.R., & Venkataraman, A. (2019). Studies and theoretical optimization of CL-20: RDX cocrystal. Propellants, Explos., Pyrotech., 44, 1570-1582.

Trache, D., Klapotke, T.M., Maiz, L., And-Elghany, M., & DeLuca, L.T. (2017). Recent advances in new oxidizers for solid rocket propulsion. Green Chem., 19, 4711-4736.

Viswanath, J.V., Venugopal, K.J., Srinivasa R.N.V., & Venkataraman, A. (2016). An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12-hexanitro- 2,4,6,8,10,12-hexaazaisowurtzitane (HNIW). Defence Technology., 12, 401-418.

Viswanath, J.V., Vijayadarshan, P., Mohan, T., Srinivasa, R.N.V., Gupta, A., & Venkataraman, A. (2017). Copper chromite as ballistic modifier in a typical solid rocket propellant composition: A novel synthetic route involved. J. Energ. Mater., 36, 69-81.

Gao, H., Jiang, W., Liu, J., Hao, G., Xiao, L., Ke, X., & Chen, T. (2017). Synthesis and characterization of new co-crystal explosive with high energy and good sensitivity. J. Energ. Mater., 35, 490-498.

Wei, X., Zhang, A., Ma, Y., Xue, X., Zhou, J., Zhu, Y., & Zhang, C. (2015). Towards low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formation. Cryst. Eng. Comm., 17, 9037-9047.

Yang, Z., Li, H., Zhou, X., Zhang, C., Huang, H., Li, J., & Nie, F. (2012). Characterization and properties of a novel energetic-energetic cocrystal explosive exposed of HNIW and BTF. Cryst. Growth Des., 12, 5155-5158.

Song, X.L., Wang, Y., Zhao, S., & Li, F. (2018). Mechanochemical fabrication and properties of CL-20/RDX nano co/mixed crystals. RSC Adv., 8, 34126-34135.

Hang, G-Y., Yu, W-l., Wang, T., Wang, J-T., & Li, Z. (2017). Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation. Journal of Molecular Structure. 1141, 577-583.

Wang, F., Du, G., Liu, X., Shao, M., Zhang, C., & Chen, L. (2022). Molecular dynamics application of cocrystal energetic materials: A review. Nanotechnology Reviews, 11, 2141-2153.

Shutao, W., Shifa, C., Siqi, L., Di, W., & Xiaohan, S. (2023). The MD calculation of the cocrystal of CL-20/RDX. Proceedings of the SPIE, 12636, id. 1263632 -7.

Bolton, O., Simke, L.R., Pagoria, P.F., & Matzger, A.J. (2012). High power explosive with good sensitivity: a 2:1 cocrystal of CL-20: HMX. Cryst. Growth Des., 12, 4311-4314.

Liu, Z-C., Wu, Q., Zhu, W-H., & Xiao, H. (2015). Insights into the roles of two constituents CL-20 and HMX in the CL-20:HMX cocrystal at high pressure: a DFT-D study. RSC Adv., 5, 34216-34225.

Sun, S.H., Zhang, H.B., Liu, Y., Xu, J., Huang, S., Wang, S., & Sun, J. (2018). Transitions from separately crystallized CL-20 and HMX to CL-20/HMX cocrystal based on solvent media. Cryst. Growth Des., 18, 77-84.

Zhao, L., Yin, Y., Sui, H., Yu, Q., Sun, S., Zhang, H., Wang, S., Chen, L., & Sun, J. (2019). Kinetic model of thermal decomposition of CL-20/HMX co-crystal for thermal safety prediction. Thermochimica Acta, 674, 44-51.

Sun, T., Xiao, J.J., Liu, Q., Zhao, F., & Xiao, H.M. (2014). Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J. Mater. Chem. A, 2, 13898-13904.

Ding, L., Zhao, F.Q., & Liu, Z.R. (2008). Thermal decomposition of CL- 20/HMX mixed system. J. Solid Rocket Technol., 31(2), 164-167.

Kim, S.B., Kim, K.J., Cho, M.H., Kim, J.H., Kim, K.T., & Kim, S.H. (2016). Micro- and nanoscale energetic materials as effective heat energy sources for enhanced gas generators. ACS Appl. Mater. Interfaces, 8, 9405-9412.

Myers, T.W., Bjorgaard, J.A., Brown, K.E., Chavez, D.E., Hanson, S.K., Scharff, R.J., Tretiak, S., & Veauthier, J.M. (2016). Energetic chromophores: low-energy laser initiation in explosive Fe(II) tetrazine complexes. J. Am. Chem. Soc., 138, 4685-4692.

Van Der Heijden, A.E.D.M., & Bouma, R.H.B. (2004). Crystallization and characterization of RDX, HMX, and CL-20. Cryst. Growth Des., 4, 999-1007.

Duan, B., Shu, Y., Liu, N., Wang, B., Lu, X., & Lu, Y. (2018). Direct insight into the formation driving force, sensitivity and detonation performance of the observed CL-20- based energetic cocrystals. Cryst. Eng. Comm., 20, 5790-5800.

Liu, Y., Li, S., Xu, J., Zhang, H., Guan, Y., Jiang, H., Huang, S., Huang, H., & Wang, Z. (2018). Three energetic 2, 2′, 4, 4′, 6, 6′-hexanitrostilbene cocrystals regularly constructed by H-bonding, π-stacking, and van der Waals interactions. Cryst. Growth Des., 18, 1940-1943.

Zhang, C., Yang, Z., Zhou, X., Zhang, C., Ma, Y., Xu, J., Zhang, Q., Nie, F., & Li, H. (2014). Evident hydrogen bonded chains building CL-20-based cocrystals. Cryst. Growth Des., 14, 3923-3928.

Thakuria, R., Nath, N.K., & Saha, B.K. (2019). The nature and applications of π-π interactions: A perspective. Cryst. Growth Des., 19, 523-528.

Zhang, M., Tan, Y., Zhao, X., Zhang, J., Huang, S., Zhai, Z., Liu, Y., & Yang, Z. (2020). Seeking a novel energetic co-crystal strategy through the interfacial self-assembly of CL-20 and HMX nanocrystals. Cryst. Eng. Comm., 22, 61-67.

An, C., Yu, B., Li, H., Guo, W., & Wang, J. (2015). Preparation and characterization of ultrafine ε-hexanitrohexaazaisowurtzitane particles. nternational Journal of Energetic Materials and Chemical Propulsion, 14(4), 295-306.

An, C., Li, H., Guo, W., Geng, X., & Wang, J. (2014). Nano cyclotetramethylene tetranitramine particles prepared by a green recrystallization process. ropellants, Explosives, Pyrotechnics, 39(5), 701-706.

Shi, X., Wang, J., Li, X., & An, C. (2015). Preparation and properties of HMX/Nitrocellulose nanocomposites. Journal of Propulsion and Power, 31 (2), 757-760.

Naya, T., & Kohga, M. (2013). Influences of particle size and content of HMX on burning characteristics of HMX-based propellant. Aerospace Science and Technology, 27(1), 209-215.

Naya, T., & Kohga, M. (2014). Influences of particle size and content of RDX on burning characteristics of RDX-based propellant. Aerospace Science and Technology, 32(1), 26-34.

Cai, H., Tian, L., Huang, B., Yang, G., Guan, D., & Huang, H. (2013). 1,1-Diamino-2,2-dintroethene (FOX-7) nanocrystals embedded in mesoporous carbon FDU-15. Mesopor. Mat., 170, 20-25.

Majano, G., Mintova, S., Bein, T., & Klapotke, T.M. (2006). Confined detection of high-energy-density materials. Adv. Mater., 18, 2440-2443.

Yang, G., Nie, F., Huang, H., Zhao, L., & Pang, W. (2006). Preparation and characterization of nano-TATB explosive. Propellants, Explos., Pyrotech., 31, 390-394.

Yang, G., Nie, F., Li, J., Guo, Q., & Qiao, Z. (2007). Preparation and characterization of nano-NTO explosive. J. Energ. Mater., 25, 35-47.

Bolton, O., & Matzger, A.J. (2011). Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed., 50, 8960-8963.

Sander, J.R., Bucar, D.K., Henry, R.F., Zhang, G.G., & MacGillivray, L.R. (2010). Pharmaceutical nano‐cocrystals: Sonochemical synthesis by solvent selection and use of a surfactant. Angew. Chem. Int. Ed., 49, 7284-7288.

Almarsson, O., & Zaworotko, M.J. (2004). Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun., 1889-1896.

Berry, D.J., Seaton, C.C., Clegg, W., Harrington, R.W., Coles, S.J., Horton, P.N., Hursthouse, M.B., Storey, R., Jones, W., Friscic, T., & Blagden, N. (2008). Applying hot-stage microscopy to co-crystal screening: A study of nicotinamide with seven active pharmaceutical ingredients. Cryst.Growth Des., 8, 1697-1712.

Khan, M., Enkelmann, V., & Brunklaus, G., (2010). Crystal engineering of pharmaceutical co-crystals: application of methyl paraben as molecular hook. J. Am. Chem. Soc., 132, 5254-5263.

Brader, M.L., Sukumar, M., Pekar, A.H., McClellan, D.S., Chance, R.E., Flora, D.B., Cox, A.L., Irwin, L., & Myers, S.R. (2002). Hybrid insulin cocrystals for controlled release delivery. Nat. Biotechnol., 20, 800-804.

Gao, B., Wang, D., Zhang, J., Hu, Y., Shen, J., Wang, J., Huang, Z., Qiao, B., Huang, H., Nie, F., & Yang, G. (2014). Facile, continuous and large-scale synthesis of CL-20/HMX nano co-crystals with high-performance by ultrasonic spray-assisted electrostatic adsorption method. J. Mater. Chem. A, 47, 1-7.

Stepanov, V., Anglade, V., Balas Hummers, W.A., Bezmelnitsyn, A.V., & Krasnoperov, L.N. (2011). Production and sensitivity evaluation of nanocrystalline RDX-based explosive compositions. Propellants, Explos., Pyrotech., 36, 240-246.

Doherty, R.M., & Watt, D.S. (2008). Relationship between RDX properties and sensitivity. Propellants, Explos., Pyrotech., 33(1), 13.

Czerski, H., Greenaway, M.W., Proud, W.G., & Field, J.E. (2006). Links between the morphology of RDX crystals and their shock sensitivity. AIP Conf. Proc., 845, 1053-1056.

van der Heijden, A.E.D.M., Bouma, R.H.B., & van der Steen, A.C. (2004). Physicochemical parameters of nitramines influencing shock sensitivity. Propellants, Explos., Pyrotech., 29, 304-313.

Spyckerelle, C., Eck, G., Sjoberg, P., & Amneus, A.M. (2008). Reduced sensitivity RDX obtained from Bachmann RDX. Propellants, Explos., Pyrotech., 33, 14-19.

Millar, D.I.A., Maynard-Casely, H.E., Allan, D.R., Cumming, A.S., Lennie, A.R., Mackay, A.J., Oswald, I.D.H., Tang, C.C., & Pulham, C.R. (2012). Crystal engineering of energetic materials: Co-crystals of CL-20. Cryst. Eng. Comm., 14, 3742-3749.

Wang, Y., Yang, Z., Li, H., Zhou, X., Zhang, Q., Wang, J., & Liu, Y. (2014). A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants, Explos., Pyrotech., 39(49), 590-596.

Anderson, S.R., am Ende, D.J., Salan, J.S., & Samuels, P. (2014). Preparation of an energetic-energetic cocrystal using resonant acoustic mixing. Propellants, Explos., Pyrotech., 39(5), 637-640.

Trask, A.V. (2005). Crystal engineering of organic cocrystals by the solid- state grinding approach. Top. Curr. Chem., 254, 41 -70.

Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., & Trappitt, G. (2011). Pharmaceutical cocrystals: An overview. Int. J. Pharm., 419(1-2), 1-11.

Han, G., Li, Q-F., Gou, R-J., Zhang, S-H., Ren, F-D., Wang, L., & Guan, R. (2017). Growth morphology of CL-20/HMX cocrystal explosive: insights from solvent behavior under different temperatures. Journal of Molecular Modeling 23, 360.

Jia, Q., Wang, J., Zhang, S., Zhang, J., Liu, N., & Kou, K. (2021). Investigation of the solid-liquid ternary phase diagrams of 2HNIW.HMX cocrystal. RSC Adv., 11(16), 9542-9549.

Zhang, S., Zhang, J., Kou, K., Jia, Q., Xu, Y., Liu, N., & Hu, R. (2019). Standard enthalpy of formation, thermal behavior, and specific heat capacity of 2HNIW•HMX co-crystals. J. Chem. Eng. Data, 64, 42-50.

Zhang, S., Zhang, J., Kou, K., Jia, Q., Xu, Y., Zerraza, S., Liu, N., & Hu, R. (2019). Investigation on the dissolution behavior of 2HNIW.HMX co-crystal prepared by a solvent/non-solvent method in N,N-dimethylformamide at T = (298.15-318.15) K. Journal of Thermal Analysis and Calorimetry, 135, 3363-3373.

Wang, K., & Zhu, W.H. (2020). Theoretical studies on the surface property, thermal behaviors, stability, and disassembly process of HMX/DMF cocrystal. Comput. Mater. Sci., 178, 109643.

Jia, Q., Zhang, J., Zhang, S., Lei, D., Xu, Y., & Kou, K. (2019). Investigation of the phase behavior of a HNIW•TNT cocrystal system and construction of ternary phase diagrams. Cryst. Growth Des., 19, 6370-6376.

Alhalaweh, A., & Velaga, S.P. (2010). Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst. Growth Des., 10, 3302-3305.

Childs, S.L., Rodríguez-Hornedo, N., Reddy, L.S., Jayasankar, A., Maheshwari, C., McCausland, L., Shipplett, R., & Stahly, B.C. (2008). Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. Cryst. Eng. Comm., 10, 856-864.

Hong, C., Xie, Y., Yao, Y., Li, G., Yuan, X., & Shen, H. (2015). A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: Myricetin cocrystals and a ternary phase diagram. Pharm. Res., 32, 47-60.

Veith, H., Schleinitz, M., Schauerte, C., & Sadowski, G. (2019). Thermodynamic approach for co-crystal screening. Cryst. Growth Des., 19, 3253.

Loschen, C., & Klamt, A. (2018). Cocrystal ternary phase diagrams from density functional theory and solvation thermodynamics. Cryst. Growth Des., 18, 5600-5608.

Jia, X., & Wang, J., (2019). Preparation and characterization of spherical submicron ε CL-20 via green mechanical demulsification. J. Energ. Mater., 37, 475-483.

Xu, X-J., Zhu, W-H., & Xiao, H-M. (2007). DFT Studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J. Phys. Chem. B, 111, 2090- 2097,

Bayat, Y., Zarandi, M., Zarei, M.A., Soleyman, R., & Zeynali, V. (2014). A novel approach for preparation of CL-20 nanoparticles by microemulsion method. J. Mol. Liq., 193, 83-86.

Hudson, R.J., Moniruzzaman, M., & Gill, P.P. (2015). Investigation of crystal morphology and shock sensitivity of cyclotrimethylenetrinitramine suspension by rheology. Propellants, Explos., Pyrotech., 40, 233- 237.

Guo, D., An, Q., Zybin, S.V., Goddard, W.A., Huang, F., & Tang, B. (2015). The co-crystal of TNT/CL-20 leads to decreased sensitivity toward thermal decomposition from first principles based reactive molecular dynamics. J. Mater. Chem. A, 3,5409-5419.

Yang, Z-W., Zhang, Y-L., Li, H-Z., Zhou, X-Q., Nie, F-D., Li, J-S., & Huang, H.H. (2012). Preparation, structure and properties of CL-20/TNT cocrystal. Hanneng Cailiao/Chinese Journal of Energetic Materials. 20. 674-679.

Cao, Q., Xiao, J.J., Gao, P., Li, S.S., Zhao, F., Wang, Y.A., & Xiao, H.M. (2017). Molecular dynamics simulations for CL-20/TNT co-crystal based polymer- bonded explosives. Journal of Theoretical and Computational Chemistry, 16(8), 1750072.

Li, Y., Yu, W-Li, & Huang, H. (2022). CL-20/TNT decomposition under shock: cocrystalline versus amorphous. RSC Adv., 12, 6938-6946.

Wang, J-Y., Li, H-Q., An, C-W., & Guo, W-J. (2015). Preparation and characterization of ultrafine CL-20/TNT cocrystal explosive by spray drying method. Chinese Journal of Energetic Materials, 23(11), 1103-1106.

Hang, G.Y., Yu, W.L., Wang, T., & Wang J-T. (2019). Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. J. Mol Model, 25, 10 (2-15) .

Chen, P.Y., Zhang, L., Zhu, S.G., & Cheng, G.B. (2015). Difference of mixing and cocrystallization of TNT and CL-20 studied by molecular dynamics simulation. Applied Mechanics and Materials (AMM), 703, 215-219.

Wang, F., Du, G., Zhang, C., & Wang, Q-Y. (2023). Mechanism of the impact- sensitivity reduction of energetic CL-20/TNT cocrystals: A nonequilibrium molecular dynamics study. Polymers, 15(6), 1576.

Tan, Y., Yang, Z., Wang, H., Li, H., Nie, F., Liu, Y., & Yu, Y. (2019). High energy explosive with low sensitivity: A new energetic cocrystal based on Cl-20 and 1,4-DNI. Cryst. Growth Des., 19, 8, 4476-4482.

Hu, R.Z., Yao, E.G., Ma, H.X., Zhang, H., Gao, H.X., Han, L., Zhao, F.Q., Luo, Y., & Zhao, H.A. (2015). The empirical nitrogen equivalent equations for predicting the detonation velocity and detonation pressure of CHNO explosive with approaching the results of Kamlet-Jacobs equations. Chin. J. Energy. Mater., 23,1243-1244.

Li, X., Song, L., Zhao, Y., & Ju, X-H. (2023). Crystal morphology prediction of CL-20 and 1,4-DNI co-crystal at different temperatures. J. Mol. Model., 29, 135.

Dong, H-Y., Long, Yi-Q., Zhou, T-T., Wu, B., & Duan, X-H. (2020). Thermodynamic on the formation of CL-20/1,4-DNI cocrystal. Chinese Journal of Energetic Materials, 28(9), 819-825.

Xu, X., Zhang, R., Xia, W., Ma, P., Ma, C., Pan, Y., & Jiang, J. (2022). Density functional theory study of CL-20/Nitroimidazoles energetic cocrystals in an external electric field. Computational and Theoretical Chemistry, 1209, 113607.

Song, X., Wang, Y., An, C., Guo, X., & Li, F. (2008). Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J. Hazard. Mater., 159, 222-229.

Song, X.L., & Li, F.S. (2009). Dependence of particle size and size distribution on mechanical sensitivity and thermal stability of hexahydro-1,3,5-trinitro-1,3,5-triazine. Defence Science Journal, 59, 37-42.

Radacsi, N., Bouma, R.H.B., Haye, E.L.M.K., ter Horst, J.H., Stankiewicz, A.I., & van der Heijden, A.E.D.M. (2013). On the reliability of sensitivity test methods for submicrometer-sized RDX and HMX particles. Propellants, Explos., Pyrotech., 38(6), 761-769.

Bayat, Y., & Zeynali, V. (2011). Preparation and characterization of nanosized-CL-20 explosive. J. Energetic Mater., 29, 281-291.

Siviour, C.R., Gifford, M.J., Walley, S.M., Proud, W.G., & Field, J.E. (2004). Particle size effects on the mechanical properties of a polymer bonded explosive. Journal of Materials Science, 39, 1255-1258.

Luman, J.R., Wehrman, B., Kuo, K.K., Yetter, R.A., Masoud, N.M., Manning, T.G., Harris, L.E., & Bruck, H.A. (2007). Development and characterization of high performance solid propellants containing nano-sized energetic ingredients. Prog. Combust. Inst., 31(2), 2089 -2096.

Chavez, D.E., Tappan, B.C., Hiskey, M.A., Son, S.F., Harry, H., Montoya, D., & Hagelberg, S. (2005). New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies. Propellants, Explos., Pyrotech., 30(6) , 412 - 417.

Sanghavi, R.R., Pillai, A.G.S., Velapure, S.P., & Singh, A. (2003). Studies on different types of nitrocellulose in triple base gun propellant formulations. J. Energetic Mater., 21(2), 87-95.

Damse, R.S., & Sikder, A.K. (2007). Role of inorganic additives on the ballistic performance of gun propellant formulations. J. Hazard. Mater., 154(1-3), 888-892.

Lv, Q., & Feng, Q.L. (2006). Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J. Mater. Sci: Mater. Med., 17(12), 1349-1356.

Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F., & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia, 6(3), 1167-1177.

Yin, Y., Wang, J., Chen, J., Sun J., & H Sui. (2022,). Thermal kinetics of energetic CL-20/BTF cocrystal ınduced by strong ıntermolecular coupling. J. Phys. Chem. C, 126(19), 8199-8207.

Hao, L., Wang J., Zhai, D., Ma, P., Ma, C., Pan, Y., & Jiang, J. (2020). Theoretical study on CL-20-based cocrystal energetic compounds in an external electric field. ACS Omega, 5(24), 14767-14775.

Li, S.S., Li, Q.L., & Xiao, J.J. (2023). DFT study for effects of hydrostatic pressure on structure, interaction and mechanical properties of CL-20/BTF cocrystal. Cryst. Eng. Comm., 25, 5966-5974.

Hamilton, B.W., Steele, B.A., Sakano, M.N., Kroonblawd, M.P., Kuo, I.-F. W., & Strachan, A. (2021). Predicted reaction mechanisms, product speciation, kinetics, and detonation properties of the insensitive explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). The Journal of Physical Chemistry A, 125(8), 1766-1777.

Zhang, S.H., & Zhao, H.L. (2014). Preparation and characterization of LLM-105 cocrystal explosives. Advanced Materials Research, 900, 251-255.

Hang, Gy., Wang, Jt., Wang, T., Shen, H-M., & Yu, W-L. (2022). Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method. Theor. Chem. Acc., 141(23),

How to Cite
Türker, L. (2024). Some CL-20 based energetic cocrystals - A review . Earthline Journal of Chemical Sciences, 11(3), 323-377.