Destructive Effect of Zinc on TEX - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: TEX, zinc, density functional, destruction, reduction

Abstract

Various metal components like Al, B, Zr etc., as energetic particles are employed in thermobaric explosives. In composite systems compatibility of ingredients with each other is an important point to be considered. In the present study, effect of zinc on TEX, which is a caged explosive of nitramine type is investigated within the constraints of density functional theory at the levels of B3LYP/6-31+G(d), ωB97X-D/6-31G(d) and ωB97X-D/6-31+G(d). Various quantum chemical properties have been calculated for the TEX+Zn composite and compared with TEX. The zinc atom interacts with TEX molecule via destructive reduction of the explosive. The B3LYP/6-31+G(d) level of calculation predicts cleavage of one of the etheric bond of the cage as well as N-NO2 bond. Whereas, ωB97X-D/6-31G(d) and ωB97X-D/6-31+G(d) level of treatments show cleavage of only one of the N-NO2 bonds. In all the cases the zinc atom acquires some positive charge development.

References

A. K. Sikder and N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications, J. Hazardous Materials A 112 (2004), 1-15. https://doi.org/10.1016/j.jhazmat.2004.04.003

V. T. Ramakrishnan, M. Vedachalam and J. H. Boyer, 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo(5,5,0,0,3,11)dodecane, Heterocycles 31 (1990), 479-480. https://doi.org/10.3987/COM-89-5192

M. B. Deshmukh, A. U. Borse, P. P. Mahulikar and D. S. Dalal, An improved and scalable synthesis of insensitive high explosive 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane (TEX), Org. Process Res. Dev. 20(7) (2016), 1363-1369. https://doi.org/10.1021/acs.oprd.6b00066

J. Legard, The Preparatory Manual of Explosives, 3rd ed., 2007.

G. A. Olah and D. R. Squire, Chemistry of Energetic Materials, Boston: Academic Press, 1991.

J. P. Agrawal and R. D. Hodgson, Organic Chemistry of Explosives, Sussex: Wiley, 2007. https://doi.org/10.1002/9780470059364

T. M. Klapötke, Chemistry of High Energy Materials, Berlin: De Gruyter, 2011. https://doi.org/10.1515/9783110227840

K. Karaghiosoff, T. M. Klapötke, A. Michailovski and G. Holl, 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazawurtzitane (TEX): a nitramine with an exceptionally high density, Acta Cryst. C 58 (2002), 580-581. https://doi.org/10.1107/S0108270102014774

J. March, Advanced Organic Chemistry, London: McGraw-Hill Int., 1977.

R. C. Fuson, Reactions of Organic Compounds, New York: Wiley, 1962.

A. Streitwieser, Jr. and C. H. Heatcock, Introduction to Organic Chemistry, New York: Macmillan Pub., 1976.

L. Türker, Contemplation on protonation of TEX, Central European Journal of Energetic Materials, CEJEM 11 (2014), 3-15.

R. O. C. Norman, Principles of Organic Synthesis, London: Methuen, 1970.

P. de Armas, C. G. Francisco, R. Hernández and E. Suárez, Reduction of aliphatic nitramines. Approach to the synthesis of nitrosamines and amines, Tetrahedron Letters 27 (1986), 3195-3198. https://doi.org/10.1016/S0040-4039(00)84752-8

H. Nivinskas, J. Sarlauskas, Z. Anusevicius, H. S. Toogood, N. S. Scrutton and N. Cenas, Reduction of aliphatic nitroesters and N-nitramines by Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase: Quantitative structure-activity relationships, FEBS Journal 275 (2008), 6192-6203. https://doi.org/10.1111/j.1742-4658.2008.06744.x

P. Kumar and K. L. Rai, Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation, Chemical Papers 66(8) (2012), 772-778. https://doi.org/10.2478/s11696-012-0195-6

M. J. Haire, Improved reduction of nitrimines to nitramines using sodium borohydride and acetic acid, J. Org. Chem. 42(21) (1977), 3446-3447. https://doi.org/10.1021/jo00441a031

L. F. Cannizzo and L. R. Huntsman, Destruction of nitramines employing aqueous dispersions of metal powders, US005523517A, 1996.

W. A. Trzciński, S. Cudziło, Z. Chyłek and L. Szymańczyk, Detonation properties and thermal behavior of FOX-7-Based explosives, Journal of Energetic Materials 31(1) (2013), 72-85. https://doi.org/10.1080/07370652.2011.611579

L. Türker, Thermobaric and enhanced blast explosives (TBX and EBX), Defence Technology 12(6) (2016), 423-445. https://doi.org/10.1016/j.dt.2016.09.002

N. H. Yen and L. Y. Wang, Reactive metals in explosives, Propellants, Explosives, Pyrotechnics 37(2) (2012), 143-155. https://doi.org/10.1002/prep.200900050

Y. Choi, S. Jeong, H. Ryu, K. Lee, B. H. Bae and K. Nam, Ecological risk characterization in a military heavy metals– and explosives-contaminated site, Human and Ecological Risk Assessment: An International Journal 17(4) (2011), 856-872. https://doi.org/10.1080/10807039.2011.588151

J. J. P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208

J. J. P. Stewart, Optimization of parameters for semiempirical methods II. Applications, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209

A. R. Leach, Molecular Modeling, Essex: Longman, 1997.

P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, J. Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

Y. Minenkov, A. Singstad, G. Occhipinti and V. R. Jensen, The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase, Dalton Trans. 41(18) (2012), 5526-5541. https://doi.org/10.1039/c2dt12232d

S. Kozuch and J. M. L. Martin, Halogen bonds: Benchmarks and theoretical analysis, J. Chem. Theory Comput. 9 (2013), 1918-1931. https://doi.org/10.1021/ct301064t

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

S. H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159

C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

P. J. Durant and B. Durant, Introduction to Advanced Inorganic Chemistry, London: Longman, 1972.

L. V. Vilkov, V. S. Mastryukov and N. I. Sadova, Determination of the Geometrical Structure of Free Molecules, Moscow: Mir Pub, 1983.

Published
2019-11-05
How to Cite
Türker, L. (2019). Destructive Effect of Zinc on TEX - A DFT Treatment. Earthline Journal of Chemical Sciences, 3(1), 1-15. https://doi.org/10.34198/ejcs.3120.115
Section
Articles