A DFT Treatment of Some Aluminized 1,3,3-Trinitroazetidine (TNAZ) Systems - A Deeper Look

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: TNAZ, 1,3,3-trinitroazetidine, aluminum, explosive, density functional theory


1,3,3-Trinitroazetedine (TNAZ) is a powerful but insensitive energetic compound having C-NO2 and N-NO2 groups attached to a four-membered backbone. Aluminum powders are often added to explosives in order to have enhanced blast effect, etc. In the present study, aluminized TNAZ system is modeled for 1-3 Al atom(s) per TNAZ molecule within the restriction of density functional theory at the levels of UB3LYP/6-311++G(d,p) and UB3LYP/cc-PVDZ. Certain structural, physical and quantum chemical properties are obtained and discussed. The considered properties are found to be highly dependent on the multiplicity (thus the number of Al atoms present) of the composite systems considered. Also, calculated IR and UV-VIS spectra of the composites have been presented.


P. F. Pagoria, G. S. Lee, R. A. Mitchell and R. D Schmidt, A review of energetic materials synthesis, Thermochim. Acta 384 (2002), 187-204. https://doi.org/10.1016/S0040-6031(01)00805-X

H. S. Jadhav, M. B. Talawar, D. D. Dhavale, S. N. Asthana and V. V. Krishnamurthy, Alternate method to synthesis of 1,3,3-trinitroazetedine (TNAZ): Next generation melt castable high energy material, Indian J. Chemical Technology 13 (2006), 41-46.

T. G. Archibald, R. Gilardi, K. Baum and C. J. George, Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine, J. Org. Chem. 55 (1990), 2920-2924. https://doi.org/10.1021/jo00296a066

R. L. McKenney, Jr., T. G. Floyd, W. E. Stevens, T. G. Archibald, A. P. Marchand, G. V. M. Sharma and S. G. Bott, Synthesis and thermal properties of 1,3-dinitro-3-(1′, 3′-dinitroazetidin-3′-yl) azetidine (tndaz) and its admixtures with 1,3,3-trinitroazetidine (TNAZ), J. Energ. Mater. 16 (1998), 199-235. https://doi.org/10.1080/07370659808217513

A. M. Hiskey, M. C. Johnson and E. D. Chavez, Preparation of 1-substituted-3, 3-dinitroazetidines, J. Energ. Mater. 17 (1999), 233-252. https://doi.org/10.1080/07370659908216106

J. Zhang, R. Hu, C. Zhu, G. Feng and Q. Long, Thermal behavior of 1,3,3-trinitroazetidine, Thermochim. Acta 298 (1997), 31-35. https://doi.org/10.1016/S0040-6031(97)00056-7

S. Zeman, The thermoanalytical study of some amino derivatives of 1,3,5-trinitrobenzene, Thermochim. Acta 216 (1993), 157-168. https://doi.org/10.1016/0040-6031(93)80389-R

M. H. Keshavarz, Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds, J. Hazard. Mater. A138 (2006), 448-451. https://doi.org/10.1016/j.jhazmat.2006.05.097

Z. Jalovy, S. Zeman, M. Suceska, P. Vavra, K. Dudek and J. M. Rajic, 1,3,3-Trinitroazetidine (TNAZ). Part I. Syntheses and properties, J. Energ. Mater. 19 (2001), 219-239. https://doi.org/10.1080/07370650108216127

D. S. Watt and M. D. Cliff, Evaluation of 1,3,3-trinitroazetidine (TNAZ) – A high performance melt-castable explosive, Technical Report DSTO-TR-1000, Defence Science & Technology Organization (DSTO), Aeronautical and Maritime Research Laboratory, Melbourne, Australia, 2000.

A. K. Sikder and N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications, J. Hazard. Mater. A112 (2004), 1-15. https://doi.org/10.1016/j.jhazmat.2004.04.003

S. Iyer, E. Y. Sarah, M. Yoyee, R. Perz, J. Alster and D. Stoc, TNAZ based composition C-4 development, 11th Annual Working Group, Institute on Synthesis of High Density Materials (Proc.), Kiamesha Lakes, 1992.

M. Oftadeh, M. Hamadanian, M. Radhoosh and M. H. Keshavarz, DFT molecular orbital calculations of initial step in decomposition pathways of TNAZ and some of its derivatives with –F, –CN and –OCH3 groups, Computational and Theoretical Chemistry 964 (2011), 262-268. https://doi.org/10.1016/j.comptc.2011.01.007

J. O. Doali, R. A. Fifer, D. I. Kruzezynski and B. J. Nelson, The mobile combustion diagnostic fixture and its application to the study of propellant combustion Part-I. Investigation of the low pressure combustion of LOVA XM-39 Propellant, Technical Report No: BRLMR-3787/5, US Ballistic Research Laboratory, Maryland, 1989.

J. P. Agrawal, Recent trends in high-energy materials, Prog. Energ. Combust. Sci. 24/1 (1998), 1-30. https://doi.org/10.1016/S0360-1285(97)00015-4

M. D. Coburn and M. A. Hiskey, T. G. Archibald, Scale-up and waste-minimization of the Los Alamos process for 1,3,3-trinitroazetidine (TNAZ), Waste Management 17 (1997), 143-146. https://doi.org/10.1016/S0956-053X(97)10013-7

L. Jizhen, F. Xuezhong, F. Xiping, Z. Fengqi and H. Rongzu, Compatibility study of 1,3,3-trinitroazetidine with some energetic components and inert materials, Journal of Thermal Analysis and Calorimetry 85(3) (2006), 779-784. https://doi.org/10.1007/s10973-005-7370-8

L. Türker and S. Varis, Desensitization of TNAZ via molecular structure modification and explosive properties – A DFT study, Acta Chim. Slov. 59 (2012), 749-759.

J. Wu, Y. Huang, L. Yang, D. Geng, F. Wang, H. Wang and L. Chen, Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine, Chem. Phys. Chem. 19(20) (2018), 2683-2695. https://doi.org/10.1002/cphc.201800550

P. P. Vadhe, R. B. Pawar, R. K. Sinha, S. N. Asthana and A. Subhananda Rao, Cast aluminized explosives (review), Combustion Explosion and Shock Waves 44(4) (2008), 461-477. https://doi.org/10.1007/s10573-008-0073-2

A. E. Wildegger-Gaissmaier, Aspects of thermobaric weaponry, Military Technology 28(6) (2004), 125-126.

N. H. Yen and L. Y. Wang, Reactive metals in explosives, Propellants Explos. Pyrotech. 37(2) (2012), 143-155. https://doi.org/10.1002/prep.200900050

M. A. Cook, A. S. Filler, R. T. Keyes, W. S. Partridge and W. Ursenbach, Aluminized explosives, J. Phys. Chem. 61(2) (1957), 189-196. https://doi.org/10.1021/j150548a013

L. Türker, Thermobaric and enhanced blast explosives (TBX and EBX), Defence Technology 12(6) (2016), 423-445. https://doi.org/10.1016/j.dt.2016.09.002

J. J. P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208

J. J. P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209

A. R. Leach, Molecular Modeling, Essex: Longman, 1997.

P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation Effects, J. Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

C. J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

S. H. Vosko, L. Vilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159

C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

L. V. Vilkov, V. S. Mastryukov and N. I. Sadova, Determination of the Geometrical Structure of Free Molecules, Moscow: Mir Pub, 1983.

O. Salomon, M. Reiher and B. A. Hess, Assertion and validation of the performance of the B3LYP* functional for the first transition metal row and the G2 test set, J. Chemical Physics 117(10) (2002), 4729-4737. https://doi.org/10.1063/1.1493179

D. M. A. Smith, M. Dupuis and T. P. Straatsma, Multiplet splittings and other properties from density functional theory: an assessment in iron-porphyrin systems, J. Mol. Phys. 103(2-3), (2005), 273-278. https://doi.org/10.1080/00268970512331317309

M. Radoń, Toward accurate spin-state energetics of transition metal complexes, Advances in Inorganic Chemistry 73 (2019), 221-264. https://doi.org/10.1016/bs.adioch.2018.10.001

D. Coskun, S. V. Jerome and R. A. Friesner, Evaluation of the performance of the B3LYP, PBE0, and M06 DFT functionals, and DBLOC-corrected versions, in the calculation of redox potentials and spin splittings for transition metal containing systems, J. Chem. Theory Comput. 12(3) (2016), 1121-1128. https://doi.org/10.1021/acs.jctc.5b00782

L. Türker, Effect of aluminum on FOX-7 structure, Chinese J. Explosives Propellants 42(3) (2019), 213-231.

L. Türker, Interaction of 1,1-diamino-2,2-dinitroethylene and gallium - DFT treatment, Earthline J. Chem. Sci. 2(2) (2019), 271-291. https://doi.org/10.34198/ejcs.2219.271291

L. Türker, RDX-aluminum interaction-A DFT study, Chinese J. Explosives Propellants 39(4) (2016), 12-18.

How to Cite
Türker, L. (2020). A DFT Treatment of Some Aluminized 1,3,3-Trinitroazetidine (TNAZ) Systems - A Deeper Look . Earthline Journal of Chemical Sciences, 3(2), 121-140. https://doi.org/10.34198/ejcs.3220.121140