Some CL-20 based energetic cocrystals - A review

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: cocrystal, HNIW, CL-20, explosive, nitramine

Abstract

There exists an inherent contradiction between the energy density and safety of energetic materials. To ameliorate and get an accord between energy and safety, cocrystallization seems to be a remedy which has been getting quite popular in the field of energetic materials. Energetic cocrystals represent one of the most important classes of research advances in the area of energetic materials. The cocrystallization significantly improves performance of energetic cocrystals, such as density, solubility, sensitivity, and thermal stability. This mini review summaries some of CL-20 based energetic cocrystals in terms of various aspects of them.

References

Dong, H., & Zhou, F. (1994). Properties of high energetic explosives and relatives, Beijing: Science Press.

Türker, L. (2019). Nitramine derivatives of NTO – A DFT study. Earthline Journal of Chemical Sciences, 1(1), 45-63. https://doi.org/10.34198/ejcs.1119.4563

Türker, L. (2011). Recent developments in the theory of explosive materials, (In T.J. Jansen (Ed.)), Explosive materials, materials science and technologies). New York: Nova Science Pub.

Türker, L., & Variş, S. (2009). A review of polycyclic aromatic energetic materials. Polycyclic Aromatic Compounds, 29(4), 228-266. https://doi.org/10.1080/10406630903135971

Türker, L. (2019). Interaction of CL-20 and zinc - A DFT treatment. Earthline Journal of Chemical Sciences, 2(2), 205-215. https://doi.org/10.34198/ejcs.2219.205215

Türker, L. (2021). Some novel tricyclic caged-nitramines - A DFT study. Earthline Journal of Chemical Sciences, 5(1), 35-48. https://doi.org/10.34198/ejcs.5121.3548

Teipel, U. (2005). Energetic materials. Particle processing and characterization. WILEY-VCH Verlag GmbH & Co. KGaA.

Fried, L.E., Manaa, M.R., Pagoria, P.F., & Simpson, R.L. (2001). Design and synthesis of energetic materials. Annu. Rev. Mater. Res., 31, 291-321. https://doi.org/10.1146/annurev.matsci.31.1.291

Gao, H.X., & Shreeve, J.M. (2011). Azole-based energetic salts. Chem. Rev., 111, 7377-7436. https://doi.org/10.1021/cr200039c

Wang, X., Xu, K., Sun, Q., Wang, B., Zhou, C., & Zhao, F. (2015). The insensitive energetic material trifurazano-oxacycloheptatriene (TFO): Synthesis and detonation properties. Propellants, Explos., Pyrotech., 40, 9-12. https://doi.org/10.1002/prep.201400148

Talawar, M.B., Sivabalan, R., Senthilkumar, N., Prabhu, G., & Asthana, S.N. (2004). Synthesis, characterization and thermal studies on furazan- and tetrazine-based high energy materials. J. Hazard. Mater., 113, 11-25. https://doi.org/10.1016/j.jhazmat.2004.05.016

Chen, H., Li, L., Jin, S., Chen, S., & Jiao, Q. (2012). Effects of additives on ε-HNIW crystal morphology and impact sensitivity. Propellants, Explos., Pyrotech., 37, 77-82. https://doi.org/10.1002/prep.201000014

Wang, Q.Y., Feng, X., Wang, S., Song, N., Chen, Y., Tong, W., Han, Y., Yang, L., & Wang, B. (2016). Metal-organic framework templated synthesis of copper azide as the primary explosive with low electrostatic sensitivity and excellent initiation ability. Adv. Mater., 28, 5837-5843. https://doi.org/10.1002/adma.201670192

Xue, Z-H., Zhang, X-X., Huang, B. B., & Xin B. (2020). The structural diversity of hybrid qy-HMX crystals with constraint of 2D dopants and the resulted changes in thermal reactivity. Chem. Eng. J., 390, 124565. https://doi.org/10.1016/j.cej.2020.124565

Nangia, A. (2004). Nomenclature in crystal engineering. In J. L. Atwood & J. W. Steed (Eds.), Encyclopedia of supramolecular chemistry (Vol. 2). New York: Marcel Dekker.

Dunitz, J.D. (2003). Crystal and co-crystal: a second opinion. Cryst. Eng. Comm., 5, 506-506. https://doi.org/10.1039/B315687G

Vishweshwar, P., Mcmahon, J.A., Bis, J.A., & Zaworotko, M.J. (2006). Pharmaceutical co-crystals. J. Pharma. Sci., 95, 499-516. https://doi.org/10.1002/jps.20578

Desiraju, G.R. (2003). Crystal and co-crystal. Cryst. Eng. Comm., 5, 466-467. https://doi.org/10.1039/b313552g

Aakeröy, C.B., & Salmon, D.J. (2005). Building co-crystals with molecular sense and supramolecular sensibility. Cryst. Eng. Comm., 7 (72), 439-448.

Liu, G.R., Li, H.Z., Gou, R.J., & Zhang, C. (2018). Packing structures of CL-20-based cocrystals. Cryst. Growth Des., 18, 7065-7078. https://doi.org/10.1021/acs.cgd.8b01228

Liu, G., Wei, S-H., & Zhang, C. (2020). Review of the intermolecular interactions in energetic molecular cocrystals. Cryst. Growth Des., 20(10), 7065-7079. https://doi.org/10.1021/acs.cgd.0c01097

Zhang, C., Xiong, Y., Jiao, F., Wang, M., & Li, H. (2019). Redefining the term of cocrystal and broadening its intension. Cryst. Growth Des., 19, 1471-1478. https://doi.org/10.1021/acs.cgd.8b01537

Liu, K., Zhang, G., Chen, Z.Q., Luan, J., & Xu, M. (2014). Research progress of cocrystal energetic materials. Chemical Analysis and Meterage., 5, 139-142.

Fleischman, S.G., Kuduva, S.S., McMahon, J.A., Moulton, B., Bailey W., Rosa, D., Naír, R-H., & Zaworotko, M.J. (2003). Crystal engineering of the composition of pharmaceutical phases: Multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des., 3, 909-919. https://doi.org/10.1021/cg034035x

Lara-Ochoa, F., & Espinosa-Perez, G. (2007). Cocrystals definitions. Supramol. Chem., 19, 553-557. https://doi.org/10.1080/10610270701501652

Aitipamula, S., Banerjee, R., Bansal, A.K., Biradha, K., Cheney, M. L., Choudhury, A.R., Desiraju, G.R., Dikundwar, A.G., Dubey, R., Duggirala, N., Ghogale, P.P., Ghosh, S., Goswami, P.K., Goud, N.R., Jetti, R.R.K.R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A.S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C.M., Rodriguez-Hornedo, Nair., Rogers, R.D., Row, T.N.G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C.C., Swift, J.A., Thaimattam, R., Thakur, T.S., Thaper, R.K., Thomas, S.P., Tothadi, S., Vangala, V.R., Variankaval, N., Vishweshwar, P., Weyna, D.R., & Zaworotko, M.J. (2012). Polymorphs, salts, and cocrystals: What’s in a name. Cryst. Growth Des., 12, 2147-2152. https://doi.org/10.1021/cg3002948

Ma, Q., Huang, S., Lu, H., Nie, F., Liao, L., Fan, G., & Huang, J. (2019). Energetic cocrystal, ionic salt, and coordination polymer of a perchlorate free high energy density oxidizer: Influence of pKa modulation on their formation. Crystal Growth & Design, 19, 714-723. https://doi.org/10.1021/acs.cgd.8b01293

Xue, Z-H., Huang, B., Li, H., & Yan, Q-L. (2020). Nitramine-based energetic cocrystals with improved stability and controlled reactivity. Crystal Growth & Design, 20 (12), 8124-8147. https://doi.org/10.1021/acs.cgd.0c01122

Shan, N., & Zaworotko, M.J. (2008). The role of cocrystals in pharmaceutical science. Drug Discovery Today, 13, 440-446. https://doi.org/10.1016/j.drudis.2008.03.004

Bu, R.P., Xiong,Y.,Wei, X.F., Li, H., & Zhang, C. (2019). Hydrogen bonding in CHON- contained energetic crystals: A review. Cryst. Growth Des., 19, 5981-5997. https://doi.org/10.1021/acs.cgd.9b00853

Ghosh, M., Sikder, A.K., Banerjee, S., & Gonnade, R.G. (2018). Studies on CL-20/HMX (2:1) Cocrystal: A new preparation method and structural and thermokinetic analysis. Cryst. Growth Des., 18, 3781-3793. https://doi.org/10.1021/acs.cgd.8b00015

Parakhin, V.V., & Smirnov, G.A. (2024). Research progress on design, synthesis and performance of energetic polynitro hexaazaisowurtzitane derivatives: Towards improved CL-20 analogues. FirePhysChem., 4(1), 21-33. https://doi.org/10.1016/j.fpc.2023.05.006 .

Gao, H., Du, P., Ke, X., Liu, J., Hao, G., Chen, T., & Jiang, W. (2017). A novel method to prepare nanosized CL-20/NQ co-crystal: vacuum freeze drying. Propellants, Explos., Pyrotech., 42, 889-895. https://doi.org/10.1002/prep.201700006

Landenberger, K.B., & Matzger, A.J. (2010). Cocrystal engineering of a prototype energetic material: Supramolecular chemistry of 2,4,6-trinitrotoluene. Cryst. Growth Des., 10, 5341-5347. https://doi.org/10.1021/cg101300n

Liu, N., Duan, B., Lu, X., Mo, H., Xu, M., Zhang, Q., & Wang, B. (2018). Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation. Cryst. Eng. Comm., 20, 2060-7. https://doi.org/10.1039/C8CE00006A

An, C., Li, H., Ye, B., & Wang, J. (2017). Nano-CL-20/HMX cocrystal explosive for significantly reduced mechanical sensitivity. J. Nanomater., 3791320-7. https://doi.org/10.1155/2017/3791320

Liu J., Yan, Z., Chi, D., & Yang, L. (2019). Synthesis of the microspheric cocrystal CL-20/2,4-DNI with high energy and low sensitivity by a spray-drying process. N.J. Chem., 43(44), 17390-4. https://doi.org/10.1039/C9NJ04731J

Qiu, H., Patel, R.B., Damavarapu, R.S., & Stepanov, V. (2015). Nanoscale 2CL-20.HMX high explosive cocrystal synthesized by bead milling. Cryst. Eng. Comm., 17(22), 4080-3. https://doi.org/10.1039/C5CE00489F

Hu,Y., Yuan, S., Li, X., Liu, M., Sun, F., Yang, Y., Hao,G., & Jiang,W. (2020). Preparation and characterization of nano-CL-20/TNT cocrystal explosives by mechanical ball-milling method. ACS Omega., 5, 17761-6. https://doi.org/10.1021/acsomega.0c02426

Huang, C., Xu, J., Tian, X., Liu, J., Pan, L., Yang, Z., & Nie, F. (2018). High-yielding and continuous fabrication of nanosized CL-20-based energetic cocrystals via electro spraying deposition. Cryst. Growth. Des., 18, 2121-8. https://doi.org/10.1021/acs.cgd.7b01568

Liu, N., Duan, B., Lu, X., Mo, H., Bi, F., Wang B., Zhang, J., & Yan, Q-L. (2019). Rapid and high-yielding formation of CL-20/DNDAP cocrystals via self-assembly in slightly soluble-medium with improved sensitivity and thermal stability. Propell., Explos., Pyrot., 44, 1242-53. https://doi.org/10.1002/prep.201900053

Zhang, M., Tan, Y., Zhao, X., Zhang, J., Huang, S., Zhai, Z., Liu, Y., & Yang, Z. (2020). Seeking a novel energetic cocrystal strategy through the interfacial self-assembly of CL-20 and HMX nanocrystals. Cryst. Eng. Comm., 22, 61-7. https://doi.org/10.1039/C9CE01447K

Li, L., Ling, H., Tao, J., Pei, C., & Duan, X. (2022). Microchannel-confined crystallization: shape-controlled continuous preparation of a high-quality CL-20/HMX cocrystal. Cryst. Eng. Comm., 24(8), 1523-8. https://doi.org/10.1039/D1CE01524A

Viswanath, J.V., Shanigaram, B., Vijayadarshan, P., Chowadary, T.V., Gupta, A., Bhanuprakash, K., Niranjana, S.R., & Venkataraman, A. (2019). Studies and theoretical optimization of CL-20: RDX cocrystal. Propellants, Explos., Pyrotech., 44, 1570-1582. https://doi.org/10.1002/prep.201900126

Trache, D., Klapotke, T.M., Maiz, L., And-Elghany, M., & DeLuca, L.T. (2017). Recent advances in new oxidizers for solid rocket propulsion. Green Chem., 19, 4711-4736. https://doi.org/10.1039/C7GC01928A

Viswanath, J.V., Venugopal, K.J., Srinivasa R.N.V., & Venkataraman, A. (2016). An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12-hexanitro- 2,4,6,8,10,12-hexaazaisowurtzitane (HNIW). Defence Technology., 12, 401-418. https://doi.org/10.1016/j.dt.2016.05.002

Viswanath, J.V., Vijayadarshan, P., Mohan, T., Srinivasa, R.N.V., Gupta, A., & Venkataraman, A. (2017). Copper chromite as ballistic modifier in a typical solid rocket propellant composition: A novel synthetic route involved. J. Energ. Mater., 36, 69-81. https://doi.org/10.1080/07370652.2017.1313911

Gao, H., Jiang, W., Liu, J., Hao, G., Xiao, L., Ke, X., & Chen, T. (2017). Synthesis and characterization of new co-crystal explosive with high energy and good sensitivity. J. Energ. Mater., 35, 490-498. https://doi.org/10.1080/07370652.2017.1290712

Wei, X., Zhang, A., Ma, Y., Xue, X., Zhou, J., Zhu, Y., & Zhang, C. (2015). Towards low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formation. Cryst. Eng. Comm., 17, 9037-9047. https://doi.org/10.1039/C5CE02009C

Yang, Z., Li, H., Zhou, X., Zhang, C., Huang, H., Li, J., & Nie, F. (2012). Characterization and properties of a novel energetic-energetic cocrystal explosive exposed of HNIW and BTF. Cryst. Growth Des., 12, 5155-5158. https://doi.org/10.1021/cg300955q

Song, X.L., Wang, Y., Zhao, S., & Li, F. (2018). Mechanochemical fabrication and properties of CL-20/RDX nano co/mixed crystals. RSC Adv., 8, 34126-34135. https://doi.org/10.1039/C8RA04122A

Hang, G-Y., Yu, W-l., Wang, T., Wang, J-T., & Li, Z. (2017). Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation. Journal of Molecular Structure. 1141, 577-583.

Wang, F., Du, G., Liu, X., Shao, M., Zhang, C., & Chen, L. (2022). Molecular dynamics application of cocrystal energetic materials: A review. Nanotechnology Reviews, 11, 2141-2153. https://doi.org/10.1515/ntrev-2022-0124

Shutao, W., Shifa, C., Siqi, L., Di, W., & Xiaohan, S. (2023). The MD calculation of the cocrystal of CL-20/RDX. Proceedings of the SPIE, 12636, id. 1263632 -7. https://doi.org/10.1117/12.2675198

Bolton, O., Simke, L.R., Pagoria, P.F., & Matzger, A.J. (2012). High power explosive with good sensitivity: a 2:1 cocrystal of CL-20: HMX. Cryst. Growth Des., 12, 4311-4314. https://doi.org/10.1021/cg3010882

Liu, Z-C., Wu, Q., Zhu, W-H., & Xiao, H. (2015). Insights into the roles of two constituents CL-20 and HMX in the CL-20:HMX cocrystal at high pressure: a DFT-D study. RSC Adv., 5, 34216-34225. https://doi.org/10.1039/C5RA01829C

Sun, S.H., Zhang, H.B., Liu, Y., Xu, J., Huang, S., Wang, S., & Sun, J. (2018). Transitions from separately crystallized CL-20 and HMX to CL-20/HMX cocrystal based on solvent media. Cryst. Growth Des., 18, 77-84. https://doi.org/10.1021/acs.cgd.7b00775

Zhao, L., Yin, Y., Sui, H., Yu, Q., Sun, S., Zhang, H., Wang, S., Chen, L., & Sun, J. (2019). Kinetic model of thermal decomposition of CL-20/HMX co-crystal for thermal safety prediction. Thermochimica Acta, 674, 44-51. https://doi.org/10.1016/j.tca.2019.02.001

Sun, T., Xiao, J.J., Liu, Q., Zhao, F., & Xiao, H.M. (2014). Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J. Mater. Chem. A, 2, 13898-13904. https://doi.org/10.1039/C4TA01150C

Ding, L., Zhao, F.Q., & Liu, Z.R. (2008). Thermal decomposition of CL- 20/HMX mixed system. J. Solid Rocket Technol., 31(2), 164-167.

Kim, S.B., Kim, K.J., Cho, M.H., Kim, J.H., Kim, K.T., & Kim, S.H. (2016). Micro- and nanoscale energetic materials as effective heat energy sources for enhanced gas generators. ACS Appl. Mater. Interfaces, 8, 9405-9412. https://doi.org/10.1021/acsami.6b00070

Myers, T.W., Bjorgaard, J.A., Brown, K.E., Chavez, D.E., Hanson, S.K., Scharff, R.J., Tretiak, S., & Veauthier, J.M. (2016). Energetic chromophores: low-energy laser initiation in explosive Fe(II) tetrazine complexes. J. Am. Chem. Soc., 138, 4685-4692. https://doi.org/10.1021/jacs.6b02155

Van Der Heijden, A.E.D.M., & Bouma, R.H.B. (2004). Crystallization and characterization of RDX, HMX, and CL-20. Cryst. Growth Des., 4, 999-1007. https://doi.org/10.1021/cg049965a

Duan, B., Shu, Y., Liu, N., Wang, B., Lu, X., & Lu, Y. (2018). Direct insight into the formation driving force, sensitivity and detonation performance of the observed CL-20- based energetic cocrystals. Cryst. Eng. Comm., 20, 5790-5800. https://doi.org/10.1039/C8CE01132J

Liu, Y., Li, S., Xu, J., Zhang, H., Guan, Y., Jiang, H., Huang, S., Huang, H., & Wang, Z. (2018). Three energetic 2, 2′, 4, 4′, 6, 6′-hexanitrostilbene cocrystals regularly constructed by H-bonding, π-stacking, and van der Waals interactions. Cryst. Growth Des., 18, 1940-1943.

Zhang, C., Yang, Z., Zhou, X., Zhang, C., Ma, Y., Xu, J., Zhang, Q., Nie, F., & Li, H. (2014). Evident hydrogen bonded chains building CL-20-based cocrystals. Cryst. Growth Des., 14, 3923-3928. https://doi.org/10.1021/cg500796r

Thakuria, R., Nath, N.K., & Saha, B.K. (2019). The nature and applications of π-π interactions: A perspective. Cryst. Growth Des., 19, 523-528. https://doi.org/10.1021/acs.cgd.8b01630

Zhang, M., Tan, Y., Zhao, X., Zhang, J., Huang, S., Zhai, Z., Liu, Y., & Yang, Z. (2020). Seeking a novel energetic co-crystal strategy through the interfacial self-assembly of CL-20 and HMX nanocrystals. Cryst. Eng. Comm., 22, 61-67. https://doi.org/10.1039/c9ce01447k

An, C., Yu, B., Li, H., Guo, W., & Wang, J. (2015). Preparation and characterization of ultrafine ε-hexanitrohexaazaisowurtzitane particles. nternational Journal of Energetic Materials and Chemical Propulsion, 14(4), 295-306. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2015011266

An, C., Li, H., Guo, W., Geng, X., & Wang, J. (2014). Nano cyclotetramethylene tetranitramine particles prepared by a green recrystallization process. ropellants, Explosives, Pyrotechnics, 39(5), 701-706. https://doi.org/10.1002/prep.201300199

Shi, X., Wang, J., Li, X., & An, C. (2015). Preparation and properties of HMX/Nitrocellulose nanocomposites. Journal of Propulsion and Power, 31 (2), 757-760. https://doi.org/10.2514/1.B35491

Naya, T., & Kohga, M. (2013). Influences of particle size and content of HMX on burning characteristics of HMX-based propellant. Aerospace Science and Technology, 27(1), 209-215. https://doi.org/10.1016/j.ast.2012.08.012

Naya, T., & Kohga, M. (2014). Influences of particle size and content of RDX on burning characteristics of RDX-based propellant. Aerospace Science and Technology, 32(1), 26-34. https://doi.org/10.1016/j.ast.2013.12.004

Cai, H., Tian, L., Huang, B., Yang, G., Guan, D., & Huang, H. (2013). 1,1-Diamino-2,2-dintroethene (FOX-7) nanocrystals embedded in mesoporous carbon FDU-15. Mesopor. Mat., 170, 20-25. https://doi.org/10.1016/j.micromeso.2012.11.034

Majano, G., Mintova, S., Bein, T., & Klapotke, T.M. (2006). Confined detection of high-energy-density materials. Adv. Mater., 18, 2440-2443. https://doi.org/10.1021/jp068863n

Yang, G., Nie, F., Huang, H., Zhao, L., & Pang, W. (2006). Preparation and characterization of nano-TATB explosive. Propellants, Explos., Pyrotech., 31, 390-394. https://doi.org/10.1002/prep.200600053

Yang, G., Nie, F., Li, J., Guo, Q., & Qiao, Z. (2007). Preparation and characterization of nano-NTO explosive. J. Energ. Mater., 25, 35-47. https://doi.org/10.1080/07370650601107104

Bolton, O., & Matzger, A.J. (2011). Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed., 50, 8960-8963. https://doi.org/10.1002/ange.201104164

Sander, J.R., Bucar, D.K., Henry, R.F., Zhang, G.G., & MacGillivray, L.R. (2010). Pharmaceutical nano‐cocrystals: Sonochemical synthesis by solvent selection and use of a surfactant. Angew. Chem. Int. Ed., 49, 7284-7288. https://doi.org/10.1002/ange.201002588

Almarsson, O., & Zaworotko, M.J. (2004). Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun., 1889-1896. https://doi.org/10.1039/B402150A

Berry, D.J., Seaton, C.C., Clegg, W., Harrington, R.W., Coles, S.J., Horton, P.N., Hursthouse, M.B., Storey, R., Jones, W., Friscic, T., & Blagden, N. (2008). Applying hot-stage microscopy to co-crystal screening: A study of nicotinamide with seven active pharmaceutical ingredients. Cryst.Growth Des., 8, 1697-1712. https://doi.org/10.1021/cg800035w

Khan, M., Enkelmann, V., & Brunklaus, G., (2010). Crystal engineering of pharmaceutical co-crystals: application of methyl paraben as molecular hook. J. Am. Chem. Soc., 132, 5254-5263. https://doi.org/10.1021/ja100146f

Brader, M.L., Sukumar, M., Pekar, A.H., McClellan, D.S., Chance, R.E., Flora, D.B., Cox, A.L., Irwin, L., & Myers, S.R. (2002). Hybrid insulin cocrystals for controlled release delivery. Nat. Biotechnol., 20, 800-804. https://doi.org/10.1038/nbt722

Gao, B., Wang, D., Zhang, J., Hu, Y., Shen, J., Wang, J., Huang, Z., Qiao, B., Huang, H., Nie, F., & Yang, G. (2014). Facile, continuous and large-scale synthesis of CL-20/HMX nano co-crystals with high-performance by ultrasonic spray-assisted electrostatic adsorption method. J. Mater. Chem. A, 47, 1-7. https://doi.org/10.1039/C4TA04979A

Stepanov, V., Anglade, V., Balas Hummers, W.A., Bezmelnitsyn, A.V., & Krasnoperov, L.N. (2011). Production and sensitivity evaluation of nanocrystalline RDX-based explosive compositions. Propellants, Explos., Pyrotech., 36, 240-246. https://doi.org/10.1002/prep.201000114

Doherty, R.M., & Watt, D.S. (2008). Relationship between RDX properties and sensitivity. Propellants, Explos., Pyrotech., 33(1), 13. https://doi.org/10.1002/prep.200800201

Czerski, H., Greenaway, M.W., Proud, W.G., & Field, J.E. (2006). Links between the morphology of RDX crystals and their shock sensitivity. AIP Conf. Proc., 845, 1053-1056. https://doi.org/10.1063/1.2263503

van der Heijden, A.E.D.M., Bouma, R.H.B., & van der Steen, A.C. (2004). Physicochemical parameters of nitramines influencing shock sensitivity. Propellants, Explos., Pyrotech., 29, 304-313. https://doi.org/10.1002/prep.200400058

Spyckerelle, C., Eck, G., Sjoberg, P., & Amneus, A.M. (2008). Reduced sensitivity RDX obtained from Bachmann RDX. Propellants, Explos., Pyrotech., 33, 14-19. https://doi.org/10.1002/prep.200800202

Millar, D.I.A., Maynard-Casely, H.E., Allan, D.R., Cumming, A.S., Lennie, A.R., Mackay, A.J., Oswald, I.D.H., Tang, C.C., & Pulham, C.R. (2012). Crystal engineering of energetic materials: Co-crystals of CL-20. Cryst. Eng. Comm., 14, 3742-3749. https://doi.org/10.1039/C2CE05796D

Wang, Y., Yang, Z., Li, H., Zhou, X., Zhang, Q., Wang, J., & Liu, Y. (2014). A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants, Explos., Pyrotech., 39(49), 590-596. https://doi.org/10.1002/prep.201300146

Anderson, S.R., am Ende, D.J., Salan, J.S., & Samuels, P. (2014). Preparation of an energetic-energetic cocrystal using resonant acoustic mixing. Propellants, Explos., Pyrotech., 39(5), 637-640. https://doi.org/10.1002/prep.201400092

Trask, A.V. (2005). Crystal engineering of organic cocrystals by the solid- state grinding approach. Top. Curr. Chem., 254, 41 -70. https://doi.org/10.1007/b100995

Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., & Trappitt, G. (2011). Pharmaceutical cocrystals: An overview. Int. J. Pharm., 419(1-2), 1-11. https://doi.org/10.1016/j.ijpharm.2011.07.037

Han, G., Li, Q-F., Gou, R-J., Zhang, S-H., Ren, F-D., Wang, L., & Guan, R. (2017). Growth morphology of CL-20/HMX cocrystal explosive: insights from solvent behavior under different temperatures. Journal of Molecular Modeling 23, 360. https://doi.org/10.1007/s00894-017-3525-3

Jia, Q., Wang, J., Zhang, S., Zhang, J., Liu, N., & Kou, K. (2021). Investigation of the solid-liquid ternary phase diagrams of 2HNIW.HMX cocrystal. RSC Adv., 11(16), 9542-9549. https://doi.org/10.1039/d1ra00057h

Zhang, S., Zhang, J., Kou, K., Jia, Q., Xu, Y., Liu, N., & Hu, R. (2019). Standard enthalpy of formation, thermal behavior, and specific heat capacity of 2HNIW•HMX co-crystals. J. Chem. Eng. Data, 64, 42-50. https://doi.org/10.1021/acs.jced.8b00454

Zhang, S., Zhang, J., Kou, K., Jia, Q., Xu, Y., Zerraza, S., Liu, N., & Hu, R. (2019). Investigation on the dissolution behavior of 2HNIW.HMX co-crystal prepared by a solvent/non-solvent method in N,N-dimethylformamide at T = (298.15-318.15) K. Journal of Thermal Analysis and Calorimetry, 135, 3363-3373. https://doi.org/10.1007/s10973-018-7502-6

Wang, K., & Zhu, W.H. (2020). Theoretical studies on the surface property, thermal behaviors, stability, and disassembly process of HMX/DMF cocrystal. Comput. Mater. Sci., 178, 109643. https://doi.org/10.1016/j.commatsci.2020.109643

Jia, Q., Zhang, J., Zhang, S., Lei, D., Xu, Y., & Kou, K. (2019). Investigation of the phase behavior of a HNIW•TNT cocrystal system and construction of ternary phase diagrams. Cryst. Growth Des., 19, 6370-6376. https://doi.org/10.1021/acs.cgd.9b00845

Alhalaweh, A., & Velaga, S.P. (2010). Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst. Growth Des., 10, 3302-3305. https://doi.org/10.1021/cg100451q

Childs, S.L., Rodríguez-Hornedo, N., Reddy, L.S., Jayasankar, A., Maheshwari, C., McCausland, L., Shipplett, R., & Stahly, B.C. (2008). Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. Cryst. Eng. Comm., 10, 856-864. https://doi.org/10.1039/b715396a

Hong, C., Xie, Y., Yao, Y., Li, G., Yuan, X., & Shen, H. (2015). A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: Myricetin cocrystals and a ternary phase diagram. Pharm. Res., 32, 47-60. https://doi.org/10.1007/s11095-014-1443-y

Veith, H., Schleinitz, M., Schauerte, C., & Sadowski, G. (2019). Thermodynamic approach for co-crystal screening. Cryst. Growth Des., 19, 3253. https://doi.org/10.1021/acs.cgd.9b00103

Loschen, C., & Klamt, A. (2018). Cocrystal ternary phase diagrams from density functional theory and solvation thermodynamics. Cryst. Growth Des., 18, 5600-5608. https://doi.org/10.1021/acs.cgd.8b00923

Jia, X., & Wang, J., (2019). Preparation and characterization of spherical submicron ε CL-20 via green mechanical demulsification. J. Energ. Mater., 37, 475-483. https://doi.org/10.1080/07370652.2019.1651421

Xu, X-J., Zhu, W-H., & Xiao, H-M. (2007). DFT Studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J. Phys. Chem. B, 111, 2090- 2097, https://doi.org/10.1021/jp066833e

Bayat, Y., Zarandi, M., Zarei, M.A., Soleyman, R., & Zeynali, V. (2014). A novel approach for preparation of CL-20 nanoparticles by microemulsion method. J. Mol. Liq., 193, 83-86. https://doi.org/10.1016/j.molliq.2013.12.028

Hudson, R.J., Moniruzzaman, M., & Gill, P.P. (2015). Investigation of crystal morphology and shock sensitivity of cyclotrimethylenetrinitramine suspension by rheology. Propellants, Explos., Pyrotech., 40, 233- 237. https://doi.org/10.1002/prep.201400129

Guo, D., An, Q., Zybin, S.V., Goddard, W.A., Huang, F., & Tang, B. (2015). The co-crystal of TNT/CL-20 leads to decreased sensitivity toward thermal decomposition from first principles based reactive molecular dynamics. J. Mater. Chem. A, 3,5409-5419. https://doi.org/10.1039/C4TA06858K

Yang, Z-W., Zhang, Y-L., Li, H-Z., Zhou, X-Q., Nie, F-D., Li, J-S., & Huang, H.H. (2012). Preparation, structure and properties of CL-20/TNT cocrystal. Hanneng Cailiao/Chinese Journal of Energetic Materials. 20. 674-679. https://doi.org/10.3969/j.issn.1006-9941.2012.06.003

Cao, Q., Xiao, J.J., Gao, P., Li, S.S., Zhao, F., Wang, Y.A., & Xiao, H.M. (2017). Molecular dynamics simulations for CL-20/TNT co-crystal based polymer- bonded explosives. Journal of Theoretical and Computational Chemistry, 16(8), 1750072. https://doi.org/10.1142/s0219633617500729

Li, Y., Yu, W-Li, & Huang, H. (2022). CL-20/TNT decomposition under shock: cocrystalline versus amorphous. RSC Adv., 12, 6938-6946. https://doi.org/10.1039/D1RA09120D

Wang, J-Y., Li, H-Q., An, C-W., & Guo, W-J. (2015). Preparation and characterization of ultrafine CL-20/TNT cocrystal explosive by spray drying method. Chinese Journal of Energetic Materials, 23(11), 1103-1106. https://doi.org/10.16251/j.cnki.1009-2307.2015.11.013

Hang, G.Y., Yu, W.L., Wang, T., & Wang J-T. (2019). Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. J. Mol Model, 25, 10 (2-15) . https://doi.org/10.1007/s00894-018-3887-1

Chen, P.Y., Zhang, L., Zhu, S.G., & Cheng, G.B. (2015). Difference of mixing and cocrystallization of TNT and CL-20 studied by molecular dynamics simulation. Applied Mechanics and Materials (AMM), 703, 215-219. https://doi.org/10.4028/www.scientific.net/amm.703.215

Wang, F., Du, G., Zhang, C., & Wang, Q-Y. (2023). Mechanism of the impact- sensitivity reduction of energetic CL-20/TNT cocrystals: A nonequilibrium molecular dynamics study. Polymers, 15(6), 1576. https://doi.org/10.3390/polym15061576

Tan, Y., Yang, Z., Wang, H., Li, H., Nie, F., Liu, Y., & Yu, Y. (2019). High energy explosive with low sensitivity: A new energetic cocrystal based on Cl-20 and 1,4-DNI. Cryst. Growth Des., 19, 8, 4476-4482. https://doi.org/10.1021/acs.cgd.9b00250

Hu, R.Z., Yao, E.G., Ma, H.X., Zhang, H., Gao, H.X., Han, L., Zhao, F.Q., Luo, Y., & Zhao, H.A. (2015). The empirical nitrogen equivalent equations for predicting the detonation velocity and detonation pressure of CHNO explosive with approaching the results of Kamlet-Jacobs equations. Chin. J. Energy. Mater., 23,1243-1244. https://doi.org/10.11943/j.issn.1006-9941.2015.12.019

Li, X., Song, L., Zhao, Y., & Ju, X-H. (2023). Crystal morphology prediction of CL-20 and 1,4-DNI co-crystal at different temperatures. J. Mol. Model., 29, 135. https://doi.org/10.1007/s00894-023-05528-1

Dong, H-Y., Long, Yi-Q., Zhou, T-T., Wu, B., & Duan, X-H. (2020). Thermodynamic on the formation of CL-20/1,4-DNI cocrystal. Chinese Journal of Energetic Materials, 28(9), 819-825. https://doi.org/10.11943/CJEM2020057

Xu, X., Zhang, R., Xia, W., Ma, P., Ma, C., Pan, Y., & Jiang, J. (2022). Density functional theory study of CL-20/Nitroimidazoles energetic cocrystals in an external electric field. Computational and Theoretical Chemistry, 1209, 113607. https://doi.org/10.1016/j.comptc.2022.113607

Song, X., Wang, Y., An, C., Guo, X., & Li, F. (2008). Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J. Hazard. Mater., 159, 222-229. https://doi.org/10.1016/j.jhazmat.2008.02.009

Song, X.L., & Li, F.S. (2009). Dependence of particle size and size distribution on mechanical sensitivity and thermal stability of hexahydro-1,3,5-trinitro-1,3,5-triazine. Defence Science Journal, 59, 37-42. https://doi.org/10.14429/dsj.59.1482

Radacsi, N., Bouma, R.H.B., Haye, E.L.M.K., ter Horst, J.H., Stankiewicz, A.I., & van der Heijden, A.E.D.M. (2013). On the reliability of sensitivity test methods for submicrometer-sized RDX and HMX particles. Propellants, Explos., Pyrotech., 38(6), 761-769. https://doi.org/10.1002/prep.201200189

Bayat, Y., & Zeynali, V. (2011). Preparation and characterization of nanosized-CL-20 explosive. J. Energetic Mater., 29, 281-291. https://doi.org/10.1080/07370652.2010.527897

Siviour, C.R., Gifford, M.J., Walley, S.M., Proud, W.G., & Field, J.E. (2004). Particle size effects on the mechanical properties of a polymer bonded explosive. Journal of Materials Science, 39, 1255-1258. https://doi.org/10.1023/B:JMSC.0000013883.45092.45

Luman, J.R., Wehrman, B., Kuo, K.K., Yetter, R.A., Masoud, N.M., Manning, T.G., Harris, L.E., & Bruck, H.A. (2007). Development and characterization of high performance solid propellants containing nano-sized energetic ingredients. Prog. Combust. Inst., 31(2), 2089 -2096. https://doi.org/10.1016/j.proci.2006.07.024

Chavez, D.E., Tappan, B.C., Hiskey, M.A., Son, S.F., Harry, H., Montoya, D., & Hagelberg, S. (2005). New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies. Propellants, Explos., Pyrotech., 30(6) , 412 - 417. https://doi.org/10.1002/prep.200500033

Sanghavi, R.R., Pillai, A.G.S., Velapure, S.P., & Singh, A. (2003). Studies on different types of nitrocellulose in triple base gun propellant formulations. J. Energetic Mater., 21(2), 87-95. https://doi.org/10.1080/713845496

Damse, R.S., & Sikder, A.K. (2007). Role of inorganic additives on the ballistic performance of gun propellant formulations. J. Hazard. Mater., 154(1-3), 888-892. https://doi.org/10.1016/j.jhazmat.2007.10.103

Lv, Q., & Feng, Q.L. (2006). Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J. Mater. Sci: Mater. Med., 17(12), 1349-1356. https://doi.org/10.1007/s10856-006-0610-z

Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F., & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia, 6(3), 1167-1177. https://doi.org/10.1016/j.actbio.2009.08.041

Yin, Y., Wang, J., Chen, J., Sun J., & H Sui. (2022,). Thermal kinetics of energetic CL-20/BTF cocrystal ınduced by strong ıntermolecular coupling. J. Phys. Chem. C, 126(19), 8199-8207. https://doi.org/10.1021/acs.jpcc.1c05812

Hao, L., Wang J., Zhai, D., Ma, P., Ma, C., Pan, Y., & Jiang, J. (2020). Theoretical study on CL-20-based cocrystal energetic compounds in an external electric field. ACS Omega, 5(24), 14767-14775. https://doi.org/10.1021/acsomega.0c01643

Li, S.S., Li, Q.L., & Xiao, J.J. (2023). DFT study for effects of hydrostatic pressure on structure, interaction and mechanical properties of CL-20/BTF cocrystal. Cryst. Eng. Comm., 25, 5966-5974. https://doi.org/10.1039/D3CE00680H

Hamilton, B.W., Steele, B.A., Sakano, M.N., Kroonblawd, M.P., Kuo, I.-F. W., & Strachan, A. (2021). Predicted reaction mechanisms, product speciation, kinetics, and detonation properties of the insensitive explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). The Journal of Physical Chemistry A, 125(8), 1766-1777. https://doi.org/10.1021/acs.jpca.0c10946

Zhang, S.H., & Zhao, H.L. (2014). Preparation and characterization of LLM-105 cocrystal explosives. Advanced Materials Research, 900, 251-255. https://doi.org/10.4028/www.scientific.net/amr.900.251

Hang, Gy., Wang, Jt., Wang, T., Shen, H-M., & Yu, W-L. (2022). Theoretical investigations on a novel CL-20/LLM-105 cocrystal explosive by molecular dynamics method. Theor. Chem. Acc., 141(23), https://doi.org/10.1007/s00214-022-02886-6

Published
2024-05-30
How to Cite
Türker, L. (2024). Some CL-20 based energetic cocrystals - A review . Earthline Journal of Chemical Sciences, 11(3), 323-377. https://doi.org/10.34198/ejcs.11324.323377
Section
Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 > >>