Dinitro Derivatives of 3,6,7,8-tetraazatricyclo[11,5. 11,5.12,4. 12,4]octa-1,4-diene – A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: nitramines, explosives, nitro compounds, pull-push, DFT

Abstract

Nitramines constitute an important class of explosive materials. In the present study three isomeric dinitro derivatives (nitramines) of the title structure have been investigated quantum chemically within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). Certain energies, quantum chemical and spectral properties of these three isomeric dinitro derivatives of the parent tetraazatricyclo structure have been obtained and discussed.

References

J. Yang, G. Wang, X. Gong, J. Zhang and Y. A. Wang, High-energy nitramine explosives: a design strategy from linear to cyclic to caged molecules, ACS Omega 3(8) (2018), 9739-9745. https://doi.org/10.1021/acsomega.8b00614

S. Antonsen, M. Aursnes, H. Gallantree-Smith, C. Dye and Y. Stenstrøm, Safe synthesis of alkylhydroxy and alkylamino nitramines, Molecules 21(12) (2016), 1738. https://doi.org/10.3390/molecules21121738

J. Liu, W. Jiang, Q. Yang, J. Song, G. Z. Hao and F. S. Li, Study of nano-nitramine explosives: preparation, sensitivity and application, Defense Technology 10(2) (2014), 184-189. https://doi.org/10.1016/j.dt.2014.04.002

J. Wang, Z. Meng, M. Xue, L. Qiu, X. Dong, Z. Xu, X. He, X. Liu and J. Li, Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples, New J. Chem. 41 (2017), 1129-1136. https://doi.org/10.1039/C6NJ02910H

J. C. Oxley, M. Hiskey, D. Naud and R. Szekeres, Thermal decomposition of nitramines: dimethylnitramine, diisopropylnitramine, and N-nitropiperidine, J. Phys. Chem. 96(6) (1992), 2505-2509. https://doi.org/10.1021/j100185a023.

V. K. Balakrishnan, A. Halasz and J. Hawari, Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates, Environ. Sci. Technol. 37(9) (2003), 1838-1843. https://doi.org/10.1021/es020959h

L. Türker, Nitramine derivatives of NTO - a DFT study, Earthline J. Chem. Sci. 1(1) (2019), 45-63. https://doi.org/10.34198/ejcs.1119.4563.

L. Türker, RDX-aluminum interaction - a DFT study, Chinese Journal of Explosives and Propellants 39 (4) (2016), 12-18. https://doi.org/10.14077/j.issn.1007-7812.2016.04.002

L. Türker, Quire interaction of certain nitramine type explosives with proton-a DFT study, Chinese Journal of Explosives and Propellants 40(1) (2017), 1-6.

L. Türker, Contemplation on spark sensitivity of certain nitramine type explosives, Journal of Hazardous Materials 169(1-3) (2009), 454-459. https://doi.org/10.1016/j.jhazmat.2009.03.117

L. Türker, Effect of magnesium atom on CL-20 - a DFT treatment, Chinese Journal of Explosives and Propellants 40(6) (2017), 17-22. https://doi.org/10.14077/j.issn.1007-7812.2017.06.003

J. A. Vágenknecht, P. Mareček and W. A. Trzciński, Sensitivity and performance properties of TEX explosives, Journal of Energetic Materials 20(3) (2002), 245-253. https://doi.org/10.1080/07370650208244823

L. Türker, Nitrogen analogs of TEX - a computational study, Defence Technology 10(4) (2014), 328-333. https://doi.org/10.1016/j.dt.2014.07.001

M. B. Deshmukh, A. U. Borse, P. P. Mahulikar and D. S. Dalal, An improved and scalable synthesis of insensitive high explosive 4,10-dinitro-2,6,8,12-tetraoxa-4,10- diazaisowurtzitane (TEX), Org. Process Res. Dev. 20(7) (2016), 1363-1369. https://doi.org/10.1021/acs.oprd.6b00066

A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, D. J. Vanderah, R. D. Gilardi, C. F. George and J. L. Flippen-Anderson, Synthesis of polyazapolycyclic caged polynitramines, Tetrahedron 54 (1998), 11793-11812. https://doi.org/10.1016/S0040-4020(98)00711-X

Y. Bayat, J. Mokhtari, N. Farhadian and M. Bayat, Heteropolyacids: an efficient catalyst for synthesis of CL-20, Journal of Energetic Materials 30(2) (2012), 124-134. https://doi.org/10.1080/07370652.2010.549539

X. Jiang, X. Guo, H. Ren and Q. Jiao, Preparation and characterization of desensitized ε HNIW in solvent-antisolvent recrystallizations, Central European Journal of Energetic Materials 9 (2012), 219-236.

X. L. Song and F. S. Li, Dependence of particle size and size distribution on mechanical sensitivity and thermal stability of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, Def. Sci. J. 59(1) (2009), 37-42. https://doi.org/10.14429/dsj.59.1482

X. L. Song, Y. Wang and C. W. An, Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine, J. Hazard. Mater. 159(2-3) (2008), 222-229. https://doi.org/10.1016/j.jhazmat.2008.02.009

C. R. Siviour, M. J. Gifford and S. M. Walley, Particle size effects on the mechanical properties of a polymer bonded explosive, J. Mater. Sci. 39(4) (2004), 125-128. https://doi.org/10.1023/B:JMSC.0000013883.45092.45

J. J. P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208

J. J. P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209

A. R. Leach, Molecular Modeling, Essex: Longman, 1997.

P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation Effects, J. Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

C. J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

S. H. Vosko, L. Vilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159

C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, NY: Plenum-Rosetta, 1975. https://doi.org/10.1007/978-1-4613-4404-9

M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, New York: McGraw-Hill, 1969.

L. Türker, Recent Developments in the Theory of Explosive Materials, in: Explosive Materials (Ed. Jansen J.T.), New York: NOVA, 2011.

I. Fleming, Frontier Orbitals and Organic Chemical Reactions, NY: Wiley, 1976.

N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers and M. S. Mannan, Predicting the impact sensitivity of polynitro compounds using quantum chemical descriptors, J. Energetic Materials 24 (2006), 17-33. https://doi.org/10.1080/07370650500374326

Spartan, Molecular Modeling in Physical Chemistry, Irvine: Wavefunction Inc., USA, 2005.

Published
2020-02-25
How to Cite
Türker, L. (2020). Dinitro Derivatives of 3,6,7,8-tetraazatricyclo[11,5. 11,5.12,4. 12,4]octa-1,4-diene – A DFT Treatment. Earthline Journal of Chemical Sciences, 3(2), 151-165. https://doi.org/10.34198/ejcs.3220.151165
Section
Articles