Clofibrate isomers, their corresponding acids and anions and interaction of the anions with zinc cation - A DFT treatise
Abstract
Clofibrate is a lipid-lowering ester used for controlling the high cholesterol and triacylglyceride levels in the blood. In the present study, clofibrate isomers, their corresponding acids and carboxylate anions have been considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). Also, interactions of some of those species with the zinc(II) cation have been considered. Various quantum chemical data, including the UV-VIS spectra, have been collected and discussed. All the species considered possess favorable thermo chemical values and they are electronically stable. All the clofibrate isomers and the carboxylate anions of them strongly interact with the zinc cation affecting some properties of them.
References
Oliver, M.F. (1963). Further observations on the effects of Atromid and of ethyl chlorophenoxyisobutyrate on serum lipid levels. J. Atheroscler. Res., 3(5-6), 427-444. https://doi.org/10.1016/S0368-1319(63)80023-X
Grundy, S.M., Ahrens, E.H., Salen, G., Schreibman, P.H., & Nestel, P.J. (1972). Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. Journal of Lipid Research, 13(4), 531-551. https://doi.org/10.1016/S0022-2275(20)39388-3
Mishkel, M.A. (1964). The treatment of xanthomatosis with Atromid. Med. J. Aust., 2(21), 828-833. https://doi.org/10.5694/j.1326-5377.1964.tb109734.x
Best, M.M., & Duncan, C.H. (1965). Reduction of serum triglycerides and cholesterol by ethyl p-chlorophenoxyisobutyrate (CPIB). Amer. J. Cardiol., 15, 230-233. https://doi.org/10.1016/0002-9149(65)90459-5
Strisower, E.H., Nichols, A.V., Lindgren, F.T., & Smith, L. (1965). The effect of Sf 20-l05 concentration changes induced by ethyl chlorophenoxyisobutyrate on high-density lipoprotein lipid composition. J. Lab. Clin. Med., 65, 748-755. PMID: 14281371.
Best, M.M., & Duncan, C.H. (1966). Effects of clofibrate and dextrothyroxine singly and in combination on serum lipids. Arch. Intern. Med., 118, 97-102. https://doi.org/10.1001/archinte.1966.00290140001001
Oliver, M.F. (1963). Further observations on the effects of Atromid and of ethyl chlorophenoxyisobutyrate on serum lipid levels. Journal of Atherosclerosis Research, 3(5-6), 427-444. https://doi.org/10.1016/S0368-1319(63)80023-X
Brown, D.F., & Doyle, J.T. (1967). Pre-beta lipoproteinemia. Amer. J. Clin. Nutr., 20, 324-332.
Levy, R.I., Quarfordt, S.W., Brown, W.V., Sloan, H.R., & Fredrickson, D.S. (1968). The efficacy of clofibrate (CPIB) in familial hyperlipoproteinemias. Advan. Exp. Med. Biol., 4, 377-387.
Hunninghake, D.B., Tucker, D.R., & Azarnoff, D.L. (1969). Long-term effects of clofibrate (Atromid-S) on serum lipids in man. Circulation, 39, 675-683.
Fischer, J., & Ganellin, CR. (2006). Analogue-based Drug Discovery. John Wiley & Sons. 474.
Salgado, R., Oehmen, A., Carvalho, G., Noronha, J.P., & Reis, M.A.M. (2012). Biodegradation of clofibric acid and identification of its metabolites. Journal of Hazardous Materials. 241-242, 182-189. PMID 23062606. https://doi.org/10.1016/j.jhazmat.2012.09.029
LiverTox: Clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-Clofibrate. [Updated (2017) Jan 24]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548134/
Perrone, M.G., Santandrea, E., Dell’Uomo, N., Giannessi, F., Milazzo, F.M., Sciarroni, A.F., Scilimati, A., & Tortorella, V. (2005). Synthesis and biological evaluation of new clofibrate analogues as potential PPARα agonists, European Journal of Medicinal Chemistry, 40(2), 143-154. https://doi.org/10.1016/j.ejmech.2004.09.018
Goldberg, A.P., Mellon, W.S., Witiak, D.T., & Feller, D.R. (1977). Comparison of hypocholesterolemic activity for cyclic analogs of clofibrate in normolipemic rats, Atherosclerosis, 27(1), 15-25. https://doi.org/10.1016/0021-9150(77)90019-3
Qu, B., Li, Q-T., Wong, K.P., Tan, T.M.C., & Halliwell, B. (2001). Mechanism of clofibrate hepatotoxicity: mitochondrial damage and oxidative stress in hepatocytes, Free Radical Biology and Medicine, 31(5), 659-669. https://doi.org/10.1016/S0891-5849(01)00632-3
König, B., Kluge, H., Haase, K., Brandsch, C., Stangl, G.I., & Eder, K. (2007). Effects of clofibrate treatment in laying hens, Poultry Science, 86(6), 1187-1195. https://doi.org/10.1093/ps/86.6.1187
Luz, I-L., Hong, E., Soria-Castro, E., Torres-Narváez, J.C., Pérez-Severiano, F., del Valle-Mondragón, L., Cervantes-Pérez, L.G., Ramírez-Ortega, M., Pastelín-Hernández, G.S., & Sánchez-Mendoza, A. (2012). Clofibrate PPARα activation reduces oxidative stress and improves ultrastructure and ventricular hemodynamics in no-flow myocardial ischemia. Journal of Cardiovascular Pharmacology, 60(4), 323-334. https://doi.org/10.1097/FJC.0b013e31826216ed
Wheelock, C.E., Goto, S., Hammock, B.D. (2007). Clofibrate-induced changes in the liver, heart, brain and white adipose lipid metabolome of Swiss-Webster mice. Metabolomics, 3, 137-145. https://doi.org/10.1007/s11306-007-0052-8
Muzio, G., Maggiora, M., Trombetta, A., Martinasso, G., Reffo, P., Colombatto, S., & Canuto, R.A. (2003). Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells, Toxicology, 187(2-3), 149-159. https://doi.org/10.1016/S0300-483X(03)00055-6
Powanda, M.C., Blackburn, B.S., Bostian, K.A., Fowler, J.P., Hauer, E.C., & Pekarek, R.S. (1978). Clofibrate-induced alterations in zinc, iron and copper metabolism, Biochemical Pharmacology, 27(1), 125-127. https://doi.org/10.1016/0006-2952(78)90270-8
Graham, J., & Odent, M. (1986). The Z factor: How zinc is vital to your health. Wellingborough: Thorsons Pub.
Signet/Mosby (1985). Medical Encyclopedia. In W. D. Glanze, K. N. Anderson, & L. E. Anderson (Eds.), New York: C.V. Mosby Co.
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Lewis, K.A., Tzilivakis, J., Warner, D., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. https://doi.org/10.1080/10807039.2015.1133242
Miller, R. D. (1984). Skeletal muscle relaxants. In B. G. Katzung (Ed.), Basic and clinical pharmacology (pp. 268-275). Los Altos, California: Lange Medical Publications.
Durant, P.J., & Durant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.
This work is licensed under a Creative Commons Attribution 4.0 International License.