Trinitroanisole isomers - A DFT treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: trinitroanisoles, methyl picrate, 2,4,6-trinitrophenyl methyl ether, explosive, isomers, density functional


Trinitroanisole isomers have been investigated within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). All the isomers are electronically stable, thermodynamically exothermic and have favorable Gibbs’ free energy of formation values at the standard states. Various quantum chemical properties, including UV-VIS spectra have been obtained and discussed. Some of the isomers considered are associated with non-Kekule alternant isoconjugate systems, therefore they might have some potential explosive character. 2,4,6-Trinitrophenylanisole is one of them and indeed it was extensively and exclusively used by Japanese as an explosive in the II world war.


Maxim, H. (1904). Explosive compound. US pat. 951445 (1904).

Maxim, H. (1905). Explosive compound. US pat. 974900 (1905).

Du Pont de Nemours, E. (1910). Process of incorporating ingredients of explosives. US pat. 976211 (1910).

Cahours, M.A. (1849). On anisole and its derivatives. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(231), 476-478.

Parker, V.D., Li, Z., Handoo, K.L., Hao, W., & Cheng, J.P. (2011). The reversible consecutive mechanism for the reaction of trinitroanisole with methoxide ion. The Journal of Organic Chemistry, 76(5), 1250-1256.

Hasegawa, Y. (1985). Kinetics of the formation of the 1,3-complex and on the formation and decomposition of the intermediate complex. Reaction of 2,4,6-trinitroanisole with n-butyl amine in dimethyl sulphoxide. J. Chem. Soc., Perkin Trans., 2, 87-92.

Lazarov, A., Trattner, A., & Ingber, A. (2000). Military Personnel. In L. Kanerva, J.E. Wahlberg, P. Elsner & H.I. Maibach (Eds.), Handbook of occupational dermatology. Berlin, Heidelberg: Springer.

Parihar, D.B., Sharma, S.P., & Verma, K.K. (1970). Investigation of methemoglobinemic and carcinogenic poisons as π complexes with 2, 4, 6-trinitroanisole and picramide. Journal of the Forensic Science Society, 10(2), 77-82. .

Kovacic, P., & Somanathan, R. (2014). Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. Journal of Applied Toxicology, 34(8), 810-824.

Barnes, J.C., Chudek, J.A., Foster, R., Jarrett, F., Mackie, F., Paton, J., & Twiselton, D.R. (1984). Complexes of pyrene with 2,4,6-trinitroanisole. Studies of association in solution and the crystal structure of the 1:1 complex. Tetrahedron, 40(9), 1595-1601.

Larranaga, M.D., Lewis, R.J. Sr., & Lewis, R.A. (2016). Hawley’s condensed chemical dictionary (16th ed.). Hoboken, NJ: John Wiley & Sons, Inc., p. 1383.

Urbansky, T. (1984). Chemistry and technology of explosives. New York: MacMillan.

Japanese Explosive Ordnance. (1946). Op 1667, 14 June. V. I, Washington 25, D.C.: Navy department bureau of ordnance.

Japanese Air Bombs from Tactical and Technical Trends. (1943). U.S. War Department publication, A report on Japanese WWII bombs. Tactical and Technical Trends, No. 28, July 1.

PubChem. “2,4,6-Trinitroanisole”. Retrieved 2023-11-13.

Fedoroff, B.T., Aaronson, H.A, Sheffield, O.E., Rees, E.F., & Clift, C.D. (1966). Encyclopedia of explosives and related items (Vol. 1, pp. A450-A453). Dover, N.J.: Picatinny Arsenal.

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Dewar, J.M.S. (1969). The molecular orbital theory of organic chemistry. New York: McGraw-Hill.

Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.

Türker, L. (2004). Possibility of cyclic transition states of nitroglycerine. Theochem, 68, 15-19.

Türker, L. (2011). Recent developments in the theory of explosive materials, In T.J. Jansen (Ed.), Explosive materials, materials science and technologies. New York: Nova Science Pub.

Türker, L.(2009). Structure-impact sensitivity relation of certain explosive compounds. J. of Energetic Mater., 27, 94-109.

Klapötke, T. M. (2011). Chemistry of high-energy materials. Berlin: De Gruyter.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5) 621-632.

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, Journal of Energetic Materials, 24, 17-33.

How to Cite
Türker, L. (2024). Trinitroanisole isomers - A DFT treatment . Earthline Journal of Chemical Sciences, 11(2), 173-187.