Interaction of biotin and oxybiotin with magnesium dication. A DFT treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: biotin, oxybiotin, magnesium, vitamin, density functional


The present computational study, considers the perturbational effect of magnesium cation on two biologically important molecules, biotin and oxybiotin within the restrictions of density functional theory at the level of B3LYP/6-31++G(d,p). The results reveal that both of the composite molecules have exothermic heat of formations and favorable Gibbs free energy of formation values at the standard state. They are electronically stable. Various quantum chemical data accompanying the considered perturbation have been collected and discussed including UV-VIS spectra. Both the HOMO and LUMO energies of oxybiotin+Mg+2 composite have been lowered down at unequal extents as compared to the biotin+Mg+2 composite in such a way that interfrontier molecular orbital energy gap value of it is much greater than the respective value of biotin+Mg+.


Bender, D. (2003). Nutritional biochemistry of the vitamins. Cambridge: Cambridge University Press.

Zempleni, J., Wijeratne, S.S.K., & Hassan, Y.I. (2009). Biotin. BioFactors, 35(1), 36-46.

McMahon, R.J. (2002). Biotin in metabolism and molecular biology. Annual Review of Nutrition, 22, 221-239.

Perrin, C.L., & Dwyer, T.J. (1987). Proton exchange in biotin: a reinvestigation, with implications for the mechanism of carbon dioxide transfer. J. Am. Chem. Soc., 109(17), 5163-5167.

Yi, L., Li, H., Zhang, R., & Han, S. (2007). Theoretical study of cooperativity in biotin. J. Phys. Chem. B, 111(51), 14370-14377.

Yi, L., Li, H., Zhang, R., & Han, S. (2004). Molecular dynamics simulations of biotin in aqueous solution. J. Phys. Chem. B, 108(28), 10131-10137.

Abyar, F., & Novak, I. (2018). Electronic structure of biotin conformers studied with SAC-CI and OVGF methods. J. Phys. Chem. A, 122(8), 2079-2085.

Emami, M., Teimouri, A., & Chermahini, A.N. (2008). Vibrational spectra and assignments using ab initio and density functional theory analysis on the structure of biotin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(4), 1516-1524.

Axelrod, A.E., Pilgrim, F.J., & Hofmann, K.J. (1946). The activity of dl-oxybiotin for the rat. J. Biol. Chem., 163, 191-194. PMID: 21023639.

Pilgrim, F.J., Axelrod, A.E., Winnick, T., & Hofmann, K. (1945). The microbiological activity of an oxygen analog of biotin. Science, 102, 35-36.

Duschinsky, R., Dolan, L.A., Flower, D., Rubin, S.H. (1945). “O-Heterohkrtin” a biologically active oxygen analog of biotin. Arch. Biochem., 6, 480-481.

Krueger, K.K., & Peterson, W.H.I. (1948). Metabolism of biotin and oxybiotin by Lactobacillus pentosus 124-2. J. Bact., 55, 693-703.

Shull, G.M., & Peterson, W.H. (1948). The nature of the “sporogenes vitamin” and other factors in the nutrition of Clostridium sporogenes. Arch. Biochem., 18, 69-83.

Hofmann, K., McCoy, R.H., Felton, J.R., Axelrod, A.E., & Pilgrim, F.J. (1945). The biological activity of oxybiotin for the rat and the chick. Arch. Biochem., 7, 393-394. PMID: 210157.

Hofmann, K.J. (1945). Furan and tetrahydrofuran derivatives. VI. The total synthesis of dl-oxybiotin. J. Am. Chem. Soc., 67, 1459-1462.

Ohrui, H., Kuzuhara, H., & Emoto, S. (1971). Syntheses with azido-sugars Part III. Preparation of d-oxybiotin. Agric. Biol. Chem., 35, 752-755.

Reddy, L.V.R., Swamy, G.N., & Shaw, A.K. (2008). A versatile route for the stereo selective synthesis of oxybiotin. Tetrahedron: Asymmetry, 19(11), 1372-1375.

Shelke, A.M., Rawat, V., Sudalai, A., & Suryavanshi, G. (2014). A short, enantioselective synthesis of 3-epi-jaspine B and (+)-oxybiotin via an intramolecular tandem desilylation oxa-Michael addition strategy. RSC Adv., 4, 49770-49774.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Dewar, J.M.S. (1969). The molecular orbital theory of organic chemistry, New York: McGraw-Hill.

Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.

Dimitriev, I.S. (1981). Molecules without chemical bond. Moscow: Mir Pub.

Durrant, P.J., & Durrant, B. (1972). Introduction to advanced inorganic chemistry, London: Longman.

Türker, L. (2024). Perturbations on oxybiotin leading to biotin. A DFT treatment. Earthline Journal of Chemical Sciences, 11(1), 47-161.

How to Cite
Türker, L. (2024). Interaction of biotin and oxybiotin with magnesium dication. A DFT treatment. Earthline Journal of Chemical Sciences, 11(2), 199-210.