Perturbations on Oxybiotin Leading to Biotin. A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: oxybiotin, biotin, vitamin, perturbation, density functional


In the present computational study, conversion of oxybiotin to biotin by means of oxygen to sulfur replacement has been investigated within the restrictions of density functional theory at the level of B3LYP/6-31++G(d,p). Both of the molecules have not only exothermic heat of formations but also favorable Gibbs free energy of formation values at the standard state. They are electronically stable. Various quantum chemical data accompanying the perturbation considered have been collected and discussed including UV-VIS spectra. The oxygen to sulfur replacement highly affects not only the distribution of molecular orbital energy levels but also the energies of the molecular orbitals in such a way that going from oxybiotin to biotin the HOMO energy level raises up but the LUMO decreases. The both occur at unequal extents thus biotin exhibits some bathochromic effect compared to oxybiotin.


Pilgrim, F.J., Axelrod, A.E., Winnick, T., & Hofmann, K. (1945). The microbiological activity of an oxygen analog of biotin. Science, 102, 35-36.

Duschinsky, R., Dolan, L.A., Flower, D., Rubin, S.H. (1945). “O-Heterohkrtin” a biologically active oxygen analog of biotin. Arch. Biochem., 6, 480-481.

Krueger, K.K., & Peterson, W.H.I. (1948). Metabolism of biotin and oxybiotin by Lactobacillus pentosus 124-2. J. Bact., 55, 693-703.

Shull, G.M., & Peterson, W.H. (1948). The nature of the “spprogenes vitamin” and other factors in the nutrition of Clostridium sporogenes. Arch. Biochem., 18, 69-83.

Hofmann, K., McCoy, R.H., Felton, J.R., Axelrod, A.E., & Pilgrim, F.J. (1945). The biological activity of oxybiotin for the rat and the chick. Arch. Biochem., 7, 393-394. PMID: 21015707.

Axelrod, A.E., Pilgrim, F.J., & Hofmann, K.J. (1946). The activity of dl-oxybiotin for the rat. J. Biol. Chem., 163, 191-194. PMID: 21023639.

Hofmann, K.J. (1945). Furan and tetrahydrofuran derivatives. VI. The total synthesis of dl-oxybiotin. J. Am. Chem. Soc., 67, 1459-1462.

Ohrui, H., Kuzuhara, H., & Emoto, S. (1971). Syntheses with azido-sugars Part III. Preparation of d-oxybiotin. Agric. Biol. Chem., 35, 752-755.

Reddy, L.V.R., Swamy, G.N., & Shaw, A.K. (2008). A versatile route for the stereoselective synthesis of oxybiotin. Tetrahedron: Asymmetry, 19(11), 1372-1375.

Shelke, A.M., Rawat, V., Sudalai, A., & Suryavanshi, G. (2014). A short, enantioselective synthesis of 3-epi-jaspine B and (+)-oxybiotin via an intramolecular tandem desilylation oxa-Michael addition strategy. RSC Adv., 4, 49770-49774.

Hofmann, K., & Winnick, T. (1945). The determination of oxybiotin in the presence of biotin. J. Biol. Chem., 160, 449-463.

Rubin, S.H., Flower, D., Rosen, F., & Drekter, L. (1945). The biological activity of O-heterobiotin. Arch. Biochem., 8, 79-90.

Bender, D. (2003). Nutritional biochemistry of the vitamins. Cambridge: Cambridge University Press.

Zempleni, J., Wijeratne, S.S.K., & Hassan, Y.I. (2009). Biotin. BioFactors, 35(1), 36-46.

McMahon, R.J. (2002). Biotin in metabolism and molecular biology. Annual Review of Nutrition, 22, 221-239.

Perrin, C.L., & Dwyer, T.J. (1987). Proton exchange in biotin: a reinvestigation, with implications for the mechanism of carbon dioxide transfer. J. Am. Chem. Soc., 109(17), 5163-5167.

Yi, L., Li, H., Zhang, R., & Han, S. (2007). Theoretical study of cooperativity in biotin. J. Phys. Chem. B, 111(51), 14370-14377.

Yi, L., Li, H., Zhang, R., & Han, S. (2004). Molecular dynamics simulations of biotin in aqueous solution. J. Phys. Chem. B, 108(28), 10131-10137.

Abyar, F., & Novak, I. (2018). Electronic structure of biotin conformers studied with SAC-CI and OVGF methods. J. Phys. Chem. A, 122(8), 2079-2085.

Emami, M., Teimouri, A., & Chermahini, A.N. (2008). Vibrational spectra and assignments using ab initio and density functional theory analysis on the structure of biotin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(4), 1516-1524.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.

Durant, P.J., & Durant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.

How to Cite
Türker, L. (2023). Perturbations on Oxybiotin Leading to Biotin. A DFT Treatment. Earthline Journal of Chemical Sciences, 11(1), 147-161.