Perturbational Effects of Lithium Cation on Phenytoin Tautomers

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: phenytoin, dilatin, lithium cation, density functional, perturbation


Phenytoin is a long-standing, anti-seizure drug used in the treatment of epilepsy, however it has been classified as possibly carcinogenic to humans. It may exhibit 1,3- and 1,5-type proton tautomerism. In the present study, within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p), tautomerism of phenytoin has been investigated. The obtained data collected for vacuum as well as aqueous conditions indicated that the equilibrium concentration of the enol type tautomer should be low. On the other hand, lithium is often referred as an antimaniac drug and used clinically to prevent mood swings in patients with bipolar effective disorder. The present study also considers the mutual interaction of lithium cation and phenytoin at the molecular level. Both the unperturbed and perturbed (by lithium cation) phenytoin tautomers have exothermic heat of formation values and favorable Gibbs free energy of formation values. They are electronically stable. Various quantum chemical data for the unperturbed and perturbed tautomers of phenytoin have been collected and discussed.


Windholz, M., & Budavari, S. (Eds.) (1983). The Merck Index (10th ed). Rahway, USA: Merck & Co. Inc.

Katzung, B.G. (1984). Basic and clinical pharmacology. Lange Medical Pub.

Dreifus, L.S., & Watanabe, Y. (1970). Current status of diphenylhydantoin. American Heart Journal, 80, 709-713.

Zeng, K., Wang, X., Xi, Z., & Yan, Y. (2010). Adverse effects of carbamazepine, phenytoin, valproate and lamotrigine monotherapy in epileptic adult Chinese patients. Clinical Neurology and Neurosurgery, 112(4), 291-295.

Patocka, J., Wu, Q., Nepovimova, E., & Kuca, K. (2020). Phenytoin - An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food and Chemical Toxicology, 142, 111393.

Kopsky, D.J., & Hesselink, K.J.M. (2017). Phenytoin in topical formulations augments pain reduction of other topically applied analgesics in the treatment of trigeminal neuralgia. Journal of Clinical Anesthesia, 38, 154-155.

Safari, J., Naeimi, H., Ghanbari, M.M., & Fini, O.S. (2009). Preparation of phenytoin derivatives under solvent-free conditions using microwave irradiation. Russian Journal of Organic Chemistry, 45(3), 477-479.

Ashnagar, A., Naseri, G.N., & Amini, M. (2009). Synthesis of 5,5-diphenyl-2,4-imisdazolidinedione (phenytoin) from almond. International Journal of ChemTech Research, 1(1), 47-52.

Bosch, J., Roca, T., Domenech, J., & Suriol, M. (1999). Synthesis of water-soluble phenytoin prodrugs. Bioorganic & Medicinal Chemistry Letters, 9(13), 1859-1862.

Lewis, R.J. (2004). Sr. Sax's Dangerous properties of industrial materials (eleventh ed.). Wiley-Interscience, Wiley & Sons, Inc., pp. 1302.

Cuttle, L., Munns, A.J., Hogg, N.A., Scott, J.R., Hooper, W.D., Dickinson, R.G., & Gillam, E.M. (2000). Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metabolism and Disposition, 28(8), 945-950.

Ozkaynakci, A., Gulcebi, M.I., Ergec, D., Ulucan, K., Uzan, M., Ozkara, C., Guney, I., & Onat, F.Y. (2015). The effect of polymorphic metabolism enzymes on serum phenytoin level. Neurological Sciences, 36(3), 397-401.

Browne, T.R., & LeDuc, B. (1995). Phenytoin: chemistry and biotransformation. In R. H. Levy, R. H. Mattson, & B. S. Meldrum (Eds.), Antiepileptic drugs (fourth ed., pp. 283-300). Raven Press.

Hesselink, J.M.K. (2017). Phenytoin: a step by step insight into its multiple mechanisms of action—80 years of mechanistic studies in neuropharmacology. Journal of Neurology, 264(9), 2043-2047.

Hains, B.C., Saab, C.Y., Lo, A.C., & Waxman, S.G. (2004). Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Experimental Neurology, 188(2), 365-377.

Hesselink, K.J.M., & Kopsky, D.J. (2017). Phenytoin: 80 years young, from epilepsy to breast cancer, a remarkable molecule with multiple modes of action. Journal of Neurology, 264, 1617-1621.

Hesselink, K.J.M., & Kopsky, D.J. (2017). Phenytoin: neuroprotection or neurotoxicity? Neurological Sciences, 38, 1137-1141.

Sezzano, P., Raimondi, A., Arboix, M., & Pantarotto, C. (1982). Mutagenicity of diphenylhydantoin and some of its metabolites towards salmonella typhimurium strains. Mutation Research, 103(3-6), 219-228.

Leonard, A., de Meester, C., Fabry, L., de Saint-Georges, L., & Dumont, P. (1984). Lack of mutagenicity of diphenylhydantoin in in vitro short-term tests. Mutation Research, 137(2-3), 79-88.

Riedel, L., & Obe, G. (1984). Mutagenicity of antiepileptic drugs. II. Phenytoin, primidone and phenobarbital. Mutation Research, 138(1), 71-74.

Jang, J.J., Takahashi, M., Furukawa, F., Toyoda, K., Hasegawa, R., Sato, H., & Hayashi, Y. (1987). Long-term in vivo carcinogenicity study of phenytoin (5,5-diphenylhydantoin) in F344 rats. Food and Chemical Toxicology, 25(9), 697-702.

Maeda, T., Sano, N., Togei, K., Shibata, M., Izumi, K., & Otsuka, H. (1988). Lack of carcinogenicity of phenytoin in (C57BL/6 x C3H)F1 mice. Journal of Toxicology and Environmental Health, 24(1), 111-1119.

Chhabra, R.S., Bucher, J.R., Haseman, J.K., Elwell, M.R., Kurtz, P.J., & Carlton, B.D. (1993). Comparative carcinogenicity of 5,5-diphenylhydantoin with or without perinatal exposure in rats and mice. Fundamental and Applied Toxicology, 21(2), 174-186.

National Toxicology Program. (1993). Toxicology and carcinogenesis studies of 5,5-diphenylhydantoin (CAS No. 57-41-0) (phenytoin) in F344/N rats and B6C3F1 mice (feed studies). National Toxicology Program Technical Report, 404, 1-303. PMID: 12621514.

Dethloff, L.A., Graziano, M.J., Goldenthal, E., Gough, A., & de la Iglesia, F.A. (1996). Perspective on the carcinogenic potential of phenytoin based on rodent tumor bioassays and human epidemiological data. Human & Experimental Toxicology, 15(4), 335-348.

Singh, G., Driever, P.H., & Sander, J.W. (2005). Cancer risk in people with epilepsy: the role of antiepileptic drugs. Brain, 128(Pt 1), 7-17.

Friedman, G.D., Jiang, S.F., Udaltsova, N., Quesenberry Jr., C.P., Chan, J., & Habel, L.A. (2009). Epidemiologic evaluation of pharmaceuticals with limited evidence of carcinogenicity. International Journal of Cancer, 125(9), 2173-2178.

IARC (Some Pharmaceutical Drugs) (1996). Monographs on the evaluation of carcinogenic risks to humans, 66.

Guerrab, W., Lgaz, H., Kansiz, S., Mague, J.T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I.H., Chung, I.M., & Ramli, Y. (2020). Synthesis of a novel phenytoin derivative: Crystal structure, Hirshfeld surface analysis and DFT calculations. Journal of Molecular Structure, 1205, 127630.

Milne, P., Hô, M., & Weaver, D.F. (1999). Interaction of anticonvulsant drugs with metals: a semi-empirical molecular orbital study of phenytoin-zinc(II) complexation. Journal of Molecular Structure: THEOCHEM, 492(1-3), 19-28.

Serdaroğlu, G., & Ortiz, J.V. (2017). Ab Initio calculations on some antiepileptic drugs such as phenytoin, phenobarbital, ethosuximide and carbamazepine. Structural Chemistry, 28, 957-964.

Saleh, G.A. (1998). Charge-transfer complexes of barbiturates and phenytoin. Talanta, 46(1), 111-121.

Luchian, R., Vinţeler, E., Chiş, C., Vasilescu, M., Leopold, N., & Chiş, V. (2015). Molecular structure of phenytoin: NMR, UV-Vis and quantum chemical calculations. Croation Chemical Acta, 88(4), 511-522.

Sotoodeh, H., Mostafavi, N., & Ebrahimi, A. (1397). Tautomerism in phenytoin: A theoretical study in gas phase. 26th Iranian Seminar on Organic Chemistry, Zabol.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. Journal of Computational Chemistry, 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Journal of Computational Chemistry, 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133-A1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Physical Review B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

March, J. (1977). Advanced organic chemistry. McGraw-Hill.

Reutov, O. (1970). Theoretical principles of organic chemistry. Mir Publishing.

Dewar, M.J.S, & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosetta.

Fleming, I. (1973). Frontier orbitals and organic reactions. Wiley.

How to Cite
Türker, L. (2023). Perturbational Effects of Lithium Cation on Phenytoin Tautomers. Earthline Journal of Chemical Sciences, 10(2), 243-266.