Neutral and Charged Nitrophenyl-N-methylnitramines - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: nitrophenyl-N-methylnitramines, charged forms, density functional theory, energetic materials, Tetryl


In the present density functional study neutral and positively charged (mono and dication forms) nitrophenyl-N-methylnitramines have been considered within the constraints of the theory and the basis set employed. Depending on the closed and open-shell nature of the systems considered, B3LYP/6-31++G(d,p) and UB3LYP/6-31++G(d,p) level of theories have been adopted, respectively. Some quantum chemical  properties of those neutral and cationic systems have been obtained and discussed. The neutral and monocation systems are found to  have exothermic heat of formation values  and favorable Gibbs free energy of formations  at the standard state. All the neutral systems and  the monocations, except just one case, are electronically stable. In the ortho monocation case nitramine group decomposes by releasing the nitro moiety. Whereas, all the dication systems considered undergo similar type decomposition. In all the neutral systems, the nitro group of nitramine moiety possesses some minute negative partial charge, but in the monocation systems it has some positive partial charge (decomposed or not). In contrast, the dication forms, release nitramine NO2 moiety which carries positive formal charge.


Borges Jr., I. (2008). Excited electronic and ionized states of N,N-dimethylnitramine. Chemical Physics, 349, 256-262.

Shu, Y., Korsounskii, B.L., & Nazina, G.M. (2004). The mechanism of thermal decomposition of secondary nitramines. Russ. Chem. Rev., 73, 293-307.

Yan, Q-L., Zeman, S., & Elbeih, A. (2013). Thermal behavior and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines. Thermochimica Acta, 562, 56-64.

Zhang, J., He, C., Parrish, D.A., & Shreeve, J.M. (2013). Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials. Chemistry, A European Journal, 19(27), 8929-8936.

Oxley, J.C., Hiskey, M., Naud, D., & Szekeres, R. (1992). Thermal decomposition of nitramines: dimethylnitramine, diisopropylnitramine, and N-nitropiperidine. The Journal of Physical Chemistry, 96(6), 2505-2509.

Keshavarz, M.H. (2009). Simple method for prediction of activation energies of the thermal decomposition of nitramines. Journal of Hazardous Materials, 162(2-3), 1557-1562.

Shishkov, I.F., Vilkov, L.V., Kolonits, M., & Rozsondai, B. (1991). The molecular geometries of some cyclic nitramines in the gas phase. Struct. Chem., 2, 57-64.

Ermolin, N.E., & Zarko, V.E. (1998). Modeling of cyclic-nitramine combustion. Combust. Explos. Shock Waves, 34, 485-501.

Gribov, P.S., Suponitsky, K.Yu., & Sheremetev, A.B. (2022). Efficient synthesis of N-(chloromethyl)nitramines via TiCl4-catalyzed chlorodeacetoxylation. New J. Chem., 46, 17548-17553.

Elbasuney, S., Yehia, M., Hamed, A., Ismael, S., & El Gamal, M. (2021). Ferric oxide colloid: novel nanocatalyst for heterocyclic nitramines. J Mater Sci: Mater Electron, 32, 4185–4195.

Patil, V.B., Zalewski, K., Schuster, J., Bělina, P., Trzciński, W.A., & Zeman, S. (2021). A new insight into the energetic co-agglomerate structures of attractive nitramines. Chemical Engineering Journal, 420, 130472.

Vinogradov, D.B., Bulatov, P.V., Petrov, E. Yu., & Tartakovsky, V.A. (2021). New access to azido-substituted alkylnitramines. Mendeleev Communications, 31(6), 795-796.

Türker, L. (2020). Some novel tricyclic caged-nitramines - A DFT Study. Earthline Journal of Chemical Sciences, 5(1), 35-48.

Türker, L. (2009). Contemplation on spark sensitivity of certain nitramine type explosives. Journal of Hazardous Materials, 169(1-3), 454-459.

Türker, L. (2019). Nitramine derivatives of NTO - A DFT study. Earthline Journal of Chemical Sciences, 1(1), 45-63.

Meyer, R., Köhler, J., & Homburg, A. (2002). Explosives. Weinheim: Wiley-VCH.

Türker, L. (2017). Effect of an alpha-particle on Tetryl - A DFT study. Int. J. of Chemical Modeling, 9(1), 27-36.

Türker, L. (2015). Modeling of effect of primary cosmic rays on Tetryl-A DFT study. Int. J. of Chemical Modeling, 7(2), 133-143.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.

Hehre, W.J., Shusterman, A.J., & Huang, W.W. (1998). A laboratory book of computational organic chemistry. Irvine, CA: Wavefunction.

How to Cite
Türker, L. (2023). Neutral and Charged Nitrophenyl-N-methylnitramines - A DFT Treatment. Earthline Journal of Chemical Sciences, 10(2), 195-211.