Geometrical Isomers of Dantrolene and Their Interactions with Calcium and Magnesium Cations

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: dantrolene, density functional, calcium cation, magnesium cation, composite


Geometrical isomers of dantrolene are considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). Dantrolene is a skeletal muscle relaxant which interferes with the release of calcium ion from the sarcoplasmic reticulum. On the other hand, some evidence exists that dantrolene is Mg2+-dependent at least in certain species. Therefore, the present study not only considers the geometrical isomers of dantrolene but also focused on the interaction of isomers of dantrolene with Ca+2 and Mg+2 ions at the molecular level. All the systems of present interest have exothermic heat of formation values and favorable Gibbs free energy of formation values. They are electronically stable. In the case of composite from the anti isomer, Ca+2 or Mg+2 ion locates itself in the cavity/fjord formed in the composite of dantrolene whereas in the syn composite, Mg+2 prefers a location outside the cavity/fjord of the composite molecule. Various quantum chemical data have been collected and discussed including UV-VIS spectra.


Snyder, H.R., Davis, C.S., Bicker ton, R.K., & Holliday, R.P. (1967). 1-[5- Arylfurfurylidene)amino]hydantoins. A new class of muscle relaxants. J. Med. Chem., 10, 807-810.

Chyatte, S.B., Birdsong, J.H., & Bergman, B.A. (1971). The effects of dantrolene sodium on spasticity and motor performance in hemiplegia. Southern Med. J., 64(2), 180-185.

Chyatte, S.B., & Birdsong, J.H. (1971). The use of dantrolene sodium in disorders of the central nervous system. South. Med. J., 64(7), 830-834. PMID: 4933014.

Miller, R.D. (1984). Skeletal muscle relaxants. In B.G. Katzung (Ed.), Basic and clinical pharmacology (pp. 268-275). Los Altos, California: Lange Medical Pub.

Britt, B.A. (1984). Dantrolene. Can. Anaesth. Soc. J., 31, 61-75.

Krause, T., Gerbershagen, M.U., Fiege, M., Weißhorn, R., & Wappler, F. (2004). Dantrolene – A review of its pharmacology, therapeutic use and new developments. Anaesthesia, 59, 364-373.

Kolb, M.E., Horne, M.L., & Martz, R. (1982). Dantrolene in human malignant hyperthermia. Anesthesiology, 56(4), 254-262. PMID: 7039419.

Grunau, B., Wiens, M., & Brubacher, J. (2010). Dantrolene in the treatment of MDMA- related hyperpyrexia: A systematic review. Canadian Journal of Emergency Medicine, 12(5), 435-442.

Hartmann, N., Pabel, S., Herting, J., Schatter, F., Renner, A., Gummert, J., Schotola, H., Danner, B.C., Maier, L.S., Frey, N., Hasenfuss, G., Fischer, T.H., & Sossalla, S. (2017). Antiarrhythmic effects of dantrolene in human diseased cardiomyocytes. Heart Rhythm, 14(3), 412-419.

Inan, S., & Wei, H. (2010). The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth. Analg., 111(6), 1400-1410.

Gülçin, İ., Beydemir, Ş., & Büyükokuroğlu, M.E. (2004). In vitro and in vivo effects of dantrolene on carbonic anhydrase enzyme activities. Biological and Pharmaceutical Bulletin, 27(5), 613-616.

Choi, R.H., Koenig, X., & Launikonis, B.S. (2017). Dantrolene requires Mg2+ to arrest malignant hyperthermia. Proc. Natl. Acad. Sci. USA.

Cannon, S.C. (2017). Mind the magnesium, in dantrolene suppression of malignant hyperthermia. Biological Sciences, 114 (18), 4576-4578.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Hitchcock, S.A., & Pennington, L.D. (2006). Structure-brain exposure relationships. J. Med. Chem., 49(26), 7559-7583. PMID: 17181137.

Shityakov, S., Neuhaus, W., Dandekar, T., & Förster, C. (2013). Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. International Journal of Computational Biology and Drug Design, 6(1-2), 146-56. PMID: 23428480.

Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.

Durant, P.J., & Durant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.

How to Cite
Türker, L. (2023). Geometrical Isomers of Dantrolene and Their Interactions with Calcium and Magnesium Cations. Earthline Journal of Chemical Sciences, 11(1), 1-18.