Geometrical Isomers of Dantrolene and Their Interactions with Calcium and Magnesium Cations
Abstract
Geometrical isomers of dantrolene are considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). Dantrolene is a skeletal muscle relaxant which interferes with the release of calcium ion from the sarcoplasmic reticulum. On the other hand, some evidence exists that dantrolene is Mg2+-dependent at least in certain species. Therefore, the present study not only considers the geometrical isomers of dantrolene but also focused on the interaction of isomers of dantrolene with Ca+2 and Mg+2 ions at the molecular level. All the systems of present interest have exothermic heat of formation values and favorable Gibbs free energy of formation values. They are electronically stable. In the case of composite from the anti isomer, Ca+2 or Mg+2 ion locates itself in the cavity/fjord formed in the composite of dantrolene whereas in the syn composite, Mg+2 prefers a location outside the cavity/fjord of the composite molecule. Various quantum chemical data have been collected and discussed including UV-VIS spectra.
References
Snyder, H.R., Davis, C.S., Bicker ton, R.K., & Holliday, R.P. (1967). 1-[5- Arylfurfurylidene)amino]hydantoins. A new class of muscle relaxants. J. Med. Chem., 10, 807-810. https://doi.org/10.1021/jm00317a011
Chyatte, S.B., Birdsong, J.H., & Bergman, B.A. (1971). The effects of dantrolene sodium on spasticity and motor performance in hemiplegia. Southern Med. J., 64(2), 180-185. https://doi.org/10.1097/00007611-197102000-00011
Chyatte, S.B., & Birdsong, J.H. (1971). The use of dantrolene sodium in disorders of the central nervous system. South. Med. J., 64(7), 830-834. PMID: 4933014. https://doi.org/10.1097/00007611-197107000-00011.
Miller, R.D. (1984). Skeletal muscle relaxants. In B.G. Katzung (Ed.), Basic and clinical pharmacology (pp. 268-275). Los Altos, California: Lange Medical Pub.
Britt, B.A. (1984). Dantrolene. Can. Anaesth. Soc. J., 31, 61-75. https://doi.org/10.1007/BF03011484
Krause, T., Gerbershagen, M.U., Fiege, M., Weißhorn, R., & Wappler, F. (2004). Dantrolene – A review of its pharmacology, therapeutic use and new developments. Anaesthesia, 59, 364-373. https://doi.org/10.1111/j.1365-2044.2004.03658.x
Kolb, M.E., Horne, M.L., & Martz, R. (1982). Dantrolene in human malignant hyperthermia. Anesthesiology, 56(4), 254-262. PMID: 7039419. https://doi.org/10.1097/00000542-198204000-00005.
Grunau, B., Wiens, M., & Brubacher, J. (2010). Dantrolene in the treatment of MDMA- related hyperpyrexia: A systematic review. Canadian Journal of Emergency Medicine, 12(5), 435-442. https://doi.org/10.1017/S1481803500012598
Hartmann, N., Pabel, S., Herting, J., Schatter, F., Renner, A., Gummert, J., Schotola, H., Danner, B.C., Maier, L.S., Frey, N., Hasenfuss, G., Fischer, T.H., & Sossalla, S. (2017). Antiarrhythmic effects of dantrolene in human diseased cardiomyocytes. Heart Rhythm, 14(3), 412-419. https://doi.org/10.1016/j.hrthm.2016.09.014
Inan, S., & Wei, H. (2010). The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth. Analg., 111(6), 1400-1410. https://doi.org/10.1213/ANE.0b013e3181f7181c
Gülçin, İ., Beydemir, Ş., & Büyükokuroğlu, M.E. (2004). In vitro and in vivo effects of dantrolene on carbonic anhydrase enzyme activities. Biological and Pharmaceutical Bulletin, 27(5), 613-616. https://doi.org/10.1248/bpb.27.613
Choi, R.H., Koenig, X., & Launikonis, B.S. (2017). Dantrolene requires Mg2+ to arrest malignant hyperthermia. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.1619835114
Cannon, S.C. (2017). Mind the magnesium, in dantrolene suppression of malignant hyperthermia. Biological Sciences, 114 (18), 4576-4578. https://doi.org/10.1073/pnas.1704103114
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Hitchcock, S.A., & Pennington, L.D. (2006). Structure-brain exposure relationships. J. Med. Chem., 49(26), 7559-7583. PMID: 17181137. https://doi.org/10.1021/jm060642i
Shityakov, S., Neuhaus, W., Dandekar, T., & Förster, C. (2013). Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. International Journal of Computational Biology and Drug Design, 6(1-2), 146-56. PMID: 23428480. https://doi.org/10.1504/IJCBDD.2013.052195
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
Durant, P.J., & Durant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.
This work is licensed under a Creative Commons Attribution 4.0 International License.