Tautomers of 2,4-dihydro-3H-1,2,4-triazol-3-one and their Composites with NTO - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 3-Nitro-1,2,4-triazol-5-one, NTO, tautomers, density functional

Abstract

In the present density functional study, some tautomers of 2,4-dihydro-3H-1,2,4-triazol-3-one (1,2-dihydro-1,2,4-triazol-3-one) and their composites formed with NTO have been considered within the constraints of the density functional theory and the basis set employed (B3LYP/6-311++G(d,p)). The triazolone considered is the precursor of NTO in various methods. It may exhibit 1,3-proton tautomerism. Various energies, QASR, quantum chemical and spectral properties have been harvested and discussed. All the considered species have exothermic heat of formation and favorable Gibbs free energy of formation values at the standard states and they are stable electronically. Although most of the composites considered exhibit a directed interaction between their partners, one of them possesses perpendicular (T-type) orientation. Certain hydrogen bondings between the tautomers and NTO occur at different extents, depending on the particular tautomer involved in the composite. Both of the components have hydrogen bond donor and acceptor properties except composite NTO+T2, in which the tautomer is the hydrogen bond donor and NTO is the acceptor. The tautomers absorb in the UV region of the spectrum like NTO, whereas in all the composites appreciable changes in the appearance of the spectra happen and certain degree of bathochromic effect occurs as compared to the respective spectra of the partners.

References

Yuxiang, O., Boren, C., Jiarong, L., Shuan, D., Jianjuan, L., & Huiping, J. (1994). Synthesis of nitro derivatives of triazoles. Heterocycles, 38, 1651-1664. https://doi.org/10.3987/REV-93-SR21

Klapötke, T.M., & Witkowski, T.G. (2016). Covalent and ionic insensitive high-explosives. Propellants Explos. Pyrotech., 41, 470-483. https://doi.org/10.1002/prep.201600006

Rothgery, E.F., Audette, D.E., Wedlich, R.C., & Csejka, D.A. (1991). The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and accelerating rate calorimetry (ARC). Thermochim. Acta, 185(2), 235-243. https://doi.org/10.1016/0040-6031(91)80045-K

Beard, B.C., & Sharma, J. (1993). Early decomposition chemistry of NTO (3-nitro-1,2,4-triazol-5-one). J. Energ. Mater., 11(4-5), 325-343. https://doi.org/10.1080/07370659308019715

Xie, Y., Hu, R., Wang, X., Fu, X., & Zhunhua, C. (1991). Thermal behavior of 3-nitro-1,2,4-triazol-5-one and its salts. Thermochim. Acta, 189, 283-296. https://doi.org/10.1016/0040-6031(91)87126-H

Manchot, V.W., & Noll, R. (1905). Triazole derivatives. Justus Liebigs Ann. Chem., 343, 1-27. https://doi.org/10.1002/jlac.19053430102

Kroger, C.F., Mietchen, R., Fank, H., Siemer, M., & Pilz, S. (1969). 1,2,4-Triazoles. XVII. Nitration and bromination of 1,2,4-triazolinones. Chem. Ber., 102, 755-766. https://doi.org/10.1002/cber.19691020307

Wang, Y.M., Chen, C., & Lin, S.T. (1999). Theoretical studies of the NTO unimolecular decomposition. J. Mol. Struct. (THEOCHEM), 460, 79-102. https://doi.org/10.1016/s0166-1280(98)00308-x

Türker, L., & Atalar, T. (2006). Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. J. Hazard Mat., A 137, 1333-1344. https://doi.org/10.1016/j.jhazmat.2006.05.015

Zbarskii, V.L., Kuz’min, V.V., & Yudin, N.V. (2004). Synthesis and properties of 1-nitro-4,5-dihydro-1H-1,2,4-triazol-5-one. Russ. J. Org. Chem., 40(7), 1069-1070. https://doi.org/10.1023/B:RUJO.0000045209.00477.56

Meredith, C., Russell, T.P., Mowrey, R.C., & McDonald, J.R. (1998). Decomposition of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO): energetics associated with several proposed initial routes. J. Phys. Chem., A 102, 471-477. https://doi.org/10.1021/jp972602j

Türker, L. (2019). Nitramine derivatives of NTO - A DFT study. Earthline Journal of Chemical Sciences, 1(1), 45-63. https://doi.org/10.34198/ejcs.1119.4563

Lee, K.Y., & Coburn, M.D. (1987). 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive. Journal of Energetic Materials, 5(1), 27-33. https://doi.org/10.1080/07370658708012347

Sorescu, D.C., Sutton, T.R.L., Thompson, D.L., Beardallm, D., & Wight, C.A. (1996). Theoretical and experimental studies of the structure and vibrational spectra of NTO. J. Mol. Struct., 384, 87-99. https://doi.org/10.1016/S0022-2860(96)09343-X

Sirach, R.R., & Dave, P.N. (2021). 3-Nitro-1,2,4-triazol-5-one (NTO): High explosive insensitive energetic material. Chem Heterocycl. Comp., 57, 720-730. https://doi.org/10.1007/s10593-021-02973-9

Sukhanov, G.T., Bosov, K.K., Sukhanova, A.G., Filippova, Y.V., Krupnova, I.A., & Pivovarova, E.V. (2021). Synthesis and properties of glycidyl polymers bearing 1,2,4-triazol-5-one, 3-nitro-1,2,4-triazol-5-one and glycidyl azide units. Propellants, Explosives, Pyrotechnics, 46 (10), 1526-1536. https://doi.org/10.1002/prep.202100182

Zhao, Y., Chen, S., Jin, S., Z. Li, Zhang, X., Wang, L., Mao, Y., Guo, H. & Li, L. (2017). Heat effects of NTO synthesis in nitric acid solution. J. Therm. Anal. Calorim., 128, 301-310. https://doi.org/10.1007/s10973-016-5912-x

Zhang, L., Ruan, J., Lu, Z., Xu, Z., Lan, G., & Wang, J. (2022). Thermal hazard assessment of 3-nitro-1,2,4-triazole-5-one (NTO) synthesis. Process Safety and Environmental Protection, 166, 649-655. https://doi.org/10.1016/j.psep.2022.08.044

Chipen, G.I., Bokalder, R.P., & Grinshtein, V.Y. (1966). 1,2,4-Triazol-3-one and its nitro and amino derivatives. Chem. Heterocycl. Compd., 2, 79-83. https://doi.org/10.1007/BF00955602

Lee, K.-Y., Chapman, L.B., & Cobura, M.D. (1987). 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive. J. Energ. Mater., 5, 27-33. https://doi.org/10.1080/07370658708012347

Cowden, C.J. (2003). Process for the preparation of 1,2,4-triazolin-5-one derivatives. Patent US 2003187274, Merck Co. Inc., Rahway, NJ, USA,

Kröger, C.-F., Selditz, P., & Mutscher, M. (1965). Über 1,2,4-Triazole, X: Die umsetzung alkylsubstituierter semicarbazide mit orthoameisensure-triäthylester. Chem. Ber., 98, 3034-3039. https://doi.org/10.1002/cber.19650980935

Kröger, C.-F., Hummel, L., Mutscher, M., & Beyer, H. (1965). Über 1.2.4-Triazole, IX: Synthesen und reaktionen von 4-amino-1.2.4-triazolonen-(5). Chem. Ber., 98, 3025-3033. https://doi.org/10.1002/cber.19650980934

Deshmukh, M.B., Wagh, N.D., Sikder, A.K., Borse, A.U., & Dalal, D.S. (2014). Cyclodextrin nitrate ester/H2SO4 as a novel nitrating system for efficient synthesis of insensitive high explosive 3 nitro 1,2,4 triazol 5 one. Industrial & Engineering Chemistry Research, 53(50), 19375-19379. https://doi.org/10.1021/ie502555a

Sarangapani, R., Ramavat, V., Reddy, T.S., Patil, R.S., Gore, G.M., & Sikder, A.K. (2014). Effect of particle size and shape of NTO on, micromeritic characteristics and its explosive formulations. Powder Technology, 253, 276-283. https://doi.org/10.1016/j.powtec.2013.11.029

Lasota, J., Chyłek, Z., & Trzciński, W. (2015). Methods for preparing spheroidal particles of 3 nitro 1,2,4 triazol 5 one (NTO). Central European Journal of Energetic Materials, 12(4), 769-783.

Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.

Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.

Reichardt, C. (2003). Solvents and solvent effects in organic chemistry. Weinheim: Wiley-VCH.

Ferguson, L.N. (1963). The modern structural theory of organic chemistry. New Delhi: Prentice-Hall of India.

Atkins, P.W. (1974). Quanta, handbook of concepts. London: Oxford Univ. Press.

Published
2023-12-10
How to Cite
Türker, L. (2023). Tautomers of 2,4-dihydro-3H-1,2,4-triazol-3-one and their Composites with NTO - A DFT Treatment. Earthline Journal of Chemical Sciences, 11(1), 121-140. https://doi.org/10.34198/ejcs.11124.121140
Section
Articles