Some Ions of Hexamethylene Triperoxide Diamine - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: hexamethylene triperoxide diamine, HMTD, peroxide explosives, explosives, density functional theory

Abstract

Hexamethylene triperoxide diamine (HMTD) is one of the peroxide type organic explosive which is sensitive to various stimuli including electrical charging. In the present study, within the restrictions of density functional theory at the level of B3LYP/6-311++G(d,p) some ionic forms of HMTD have been investigated. Its anionic and cationic forms considered all undergo decomposition. The monoanion form exhibited cleavage of two peroxide bonds and two C-H bonds whereas the monocation and dication forms show the rupture of O-CH2 bonds. Some quantum chemical properties and UV-VIS spectra of HMTD and the decomposed products were obtained and discussed.

References

Legler, L. (1885). Ueber Produkte der langsamen Verbrennung des Aethylethers. Ber. Dtsch. Chem. Ges., 18(2), 3343-3351. https://doi.org/10.1002/cber.188501802306

Baeyer, A., & Villiger, V. (1900). Über die Nomenclatur der Superoxyde und die Superoxyde der Aldehyde. Ber. Dtsch. Chem. Ges., 33(2), 2479-2487.

Girsewald, C. (1912). Beiträge zur Kenntnis des Wasserstoffperoxyds. Über die Einwirkung des Wasserstoffperoxyds auf Hexamethylentetramin. Ber. Dtsch. Chem. Ges., 45, 2571-2576. https://doi.org/10.1002/cber.191204502161

Oxley, J.C., Smith, J.L., Bowden, P., & Rettinger, R. (2013). Factors influencing TATP and DADP formation: Part I. Propellants Explos. Pyrotech., 38, 244-254. https://doi.org/10.1002/prep.201200116

Matyas, R., Selesovsky, J., & Musil, T. (2013). Decreasing the friction sensitivity of TATP, DADP, and HMTD. Cent. Eur. J. Energ. Mater., 10(2), 263-275.

Oxley, J.C., Smith, J.L., Porter, M., McLennan, L., Colizza, K., Zeiri, Y., Kosloff, R., & Dubnikova, F. (2016). Synthesis and degradation of hexamethylene triperoxide diamine (HMTD). Propellants Explos. Pyrotech., 41, 334-350. https://doi.org/10.1002/prep.201500151

Schaefer, W.P., Fourkas, J.T., & Tiemann, B.G. (1985). Structure of hexamethylene triperoxide diamine. J. Am. Chem. Soc., 107, 2461-2463. https://doi.org/10.1021/ja00294a043

Wierzbicki, A., Salter, E.A., Cioffi, E.A., & Stevens, E.D. (2001). Density functional theory and x-ray investigations of p- and m-hexamethylene triperoxide diamine and its dialdehyde derivative. J. Phys. Chem. A, 105, 8763-8768. https://doi.org/10.1021/jp0123841

Colizza, K., Porter, M., Smith, J.L., & Oxley, J.C. (2015). Gas phase reactions of alcohols with hexamethylene triperoxide diamine (HMTD) under atmospheric pressure chemical ionization conditions. Rapid Commun. Mass Spectrom., 29(1), 74-80. https://doi.org/10.1002/rcm.7084

Oxley, J.C., Smith, J.L., Chen, H., & Cioffi, E. (2002). Decomposition of multi-peroxidic compounds: Part II. Hexamethylene triperoxide diamine (HMTD). Thermochim. Acta, 388, 215-225.

Oxley, J., Zhang, J., Smith, J., & Cioffi, E. (2000). Mass spectra of unlabeled and isotopically labeled hexamethylene triperoxide diamine (HMTD). Propellants Explos. Pyrotech., 25, 284-287. https://doi.org/10.1002/1521-4087(200012)25:6<284::aid-prep284>3.0.co;2-x

Oxley, J.C., Smith, J.L., Lou, L., & Brady, J. ( 2009). Determining vapor pressures of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propellants Explos. Pyrotech., 34(6), 539-543. https://doi.org/10.1002/prep.200800073

Gonsalves, M.D., McLennan, L., Slitt, A.L., Smith, J.L., & Oxley, J.C. (2021). In vitro metabolism of HMTD and blood stability and toxicity of peroxide explosives (TATP and HMTD) in canines and humans. Xenobiotica, 51(4), 394403. https://doi.org/10.1080/00498254.2021.1874563

Aernecke, M.J., Mendum, T., Geurtsen, G., Ostrinskaya, A., & Kunz, R.R. (2015). Vapor pressure of hexamethylene triperoxide diamine (HMTD) estimated using secondary electrospray ionization mass spectrometry. The Journal of Physical Chemistry A, 119(47), 11514-11522. https://doi.org/10.1021/acs.jpca.5b08929

Bowden, P.R., Tappan, B.C., Manner, V.W., Preston, D.N., & Scott, B.L. (2017). Characterization of diacetone diperoxide (DADP). AIP Conference Proceedings, 1793, 040010. https://doi.org/10.1063/1.4971504

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Vilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Bach, R.D., & Schlegel, H.B. (2020). Bond dissociation energy of peroxides revisited. Phys. Chem. A, 124(23), 4742-4751. https://doi.org/10.1021/acs.jpca.0c02859

Published
2022-03-03
How to Cite
Türker, L. (2022). Some Ions of Hexamethylene Triperoxide Diamine - A DFT Treatment. Earthline Journal of Chemical Sciences, 8(1), 1-12. https://doi.org/10.34198/ejcs.8122.112
Section
Articles