Some stereoisomers and tautomers of gemcitabine – A DFT treatment
Abstract
Gemcitabine which is a cancer chemotherapy agent has a wide application against various types of tumors. In the present study, gemcitabine and its various stereoisomers and also its 1,3- and 1,5-type proton tautomers have been investigated within the constraints of density functional theory (DFT) at the level of B3LYP/6-311++G(d,p). All the isomers/tautomers presently considered (in vacuum conditions) have not only exothermic heat of formation values but also possess favorable Gibbs free energy of formation values and they are electronically stable. Various quantum chemical data have been collected and discussed including UV-VIS spectra.
References
van Moorsel, C.J., Veerman, G., Bergman, A.M., Guechev, A., Vermorken, J.B., Postmus, P.E., & Peters, G.J. (1997). Combination chemotherapy studies with gemcitabine. Seminars in Oncology, 24(2 Suppl 7), S7-17-S7-23. PMID: 9194475.
Moysan, E., Bastiat, G., & Benoit, J-P.(2013). Gemcitabine versus modified gemcitabine: A review of several promising chemical modifications. Molecular Pharmaceutics. Mol. Pharmaceutics, 10(2), 430-444. https://doi.org/10.1021/mp300370t
Brown, K., Dixey, M., Weymouth-Wilson, A., Linclau, B. (2014). The synthesis of gemcitabine. Carbohydrate Research, 387, 59-73. https://doi.org/10.1016/j.carres.2014.01.024
Chatzisideri, T., Leonidis, G., Karampelas, T., Skavatsou, E., Velentza-Almpani, A., Bianchini, F., Tamvakopoulos, C., & Sarli, V. (2022). Integrin-mediated targeted cancer therapy using c(RGDyK)-based conjugates of gemcitabine. Journal of Medicinal Chemistry, 65 (1), 271-284. https://doi.org/10.1021/acs.jmedchem.1c01468
Zhong, H., Mu, J., Du, Y., Xu, Z., Xu, Y., Yu, N., Zhang, S., & Guo, S. (2020). Acid-triggered release of native gemcitabine conjugated in polyketal nanoparticles for enhanced anticancer therapy. Biomacromolecules, 21(2), 803-814. https://doi.org/10.1021/acs.biomac.9b01493
Jiang, Z., Pflug, K., Usama, S. M., Kuai, D., Yan, X., Sitcheran, R., & Burgess, K. (2019). Cyanine–gemcitabine conjugates as targeted theranostic agents for glioblastoma tumor cells. Journal of Medicinal Chemistry, 62(20), 9236-9245. https://doi.org/10.1021/acs.jmedchem.9b01147
Tam, Y.T., Huang,C., Poellmann, M., & Kwon. G.S. (2018). Stereocomplex prodrugs of oligo(lactic acid)n-gemcitabine in poly(ethylene glycol)-block-poly(d,l-lactic acid) micelles for ımproved physical stability and enhanced antitumor efficacy. ACS Nano, 12(7), 7406-7414. https://doi.org/10.1021/acsnano.8b04205
Zhang, H., Sun, Z., Wang, K., Li, N., Chen, H., Tan, X., Li, L., He, Z., & Sun. J. (2018). Multifunctional tumor-targeting cathepsin b-sensitive gemcitabine prodrug covalently targets albumin in situ and ımproves cancer therapy. Bioconjugate Chemistry, 29(6), 1852-1858. https://doi.org/10.1021/acs.bioconjchem.8b00223
Karampelas, T., Skavatsou, E., Argyros, O., Fokas, D., & Tamvakopoulos, C. (2017). Gemcitabine based peptide conjugate with ımproved metabolic properties and dual mode of efficacy. Molecular Pharmaceutics, 14(3), 674-685. https://doi.org/10.1021/acs.molpharmaceut.6b00961
Karampelas, T., Argyros, O., Sayyad, N., Spyridaki, K., Pappas, C., Morgan, K., Kolios, G., Millar, R.P., Liapakis, G., Tzakos, A.G., Fokas, D., & Tamvakopoulos, C. (2014). GnRH-gemcitabine conjugates for the treatment of androgen-ındependent prostate cancer: pharmacokinetic enhancements combined with targeted drug delivery. Bioconjugate Chemistry, 25(4), 813-823. https://doi.org/10.1021/bc500081g
Wang, S., Cen, D., & Zhang, C.A. (2024). Cathepsin B-sensitive gemcitabine prodrug for enhanced pancreatic cancer therapy. Journal of Pharmaceutical Sciences, 113(7), 1927-1933. https://doi.org/10.1016/j.xphs.2024.03.018
Wang, R., Li, Y., Gao, J., & Luan, Y. (2022). WRQ-2, a gemcitabine prodrug, reverses gemcitabine resistance caused by hENT1 inhibition. Drug Discoveries & Therapeutics, 16(6), 286-292. https://doi.org/10.5582/ddt.2022.01077
Hamsici, S., Ekiz, M.S., Ciftci, G.C., Tekinay, A.B., & Guler, M.O. (2017). Gemcitabine Integrated Nano-Prodrug Carrier System. Bioconjugate Chemistry, 28(5), 1491-1498. https://doi.org/10.1021/acs.bioconjchem.7b00155
Wang, M., Qu, K., Zhao, P., Yin, X., Meng, Y., Herdewijn, P., Liu, C., Zhang, L., & Xia, X. (2023). Synthesis and anticancer evaluation of acetylated-lysine conjugated gemcitabine prodrugs. RSC Medicinal Chemistry, 14(8), 1572-1580. https://doi.org/10.1039/D3MD00190C
Li, Y., Liu, Y., Chen, Y., Wang, K., & Luan, Y. (2022). Design, synthesis and antitumor activity study of a gemcitabine prodrug conjugated with a HDAC6 inhibitor. Bioorganic & Medicinal Chemistry Letters, 72, 128881. https://doi.org/10.1016/j.bmcl.2022.128881
Han, H. , Valdepérez, D., Jin, B., Yang, Q, Li, Z., Wu, Y., Pelaz, B., Parak, W.J., & Ji, J . (2017). Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano, 11(2), 1281-1291. https://doi.org/10.1021/acsnano.6b05541
Han, H., Li, S., Zhong, Y., Huang, Y., Wang, K ., Jin, Q., Ji, J., & Yao, K. (2022). Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences, 17(1), 35-52. https://doi.org/10.1016/j.ajps.2021.06.001
Hawryłkiewicz, A., & Ptaszyńska, N. (2021). Gemcitabine peptide-based conjugates and their application intargeted tumor therapy. Molecules, 26(2), 364. https://doi.org/10.3390/molecules26020364
Zhong,W., Zhang, X., Duan, X., Liu, H., Fang, Y., Luo, M., Fang, Z., Miao, C., Lin, D., & Wu, J. (2022). Redox-responsive self-assembled polymeric nanoprodrug for delivery of gemcitabine in B-cell lymphoma therapy. Acta Biomaterialia 144, 67-80. https://doi.org/10.1016/j.actbio.2022.03.035
Wang, Y, Fan, W., Dai, X., Katragadda, U., Mckinley, DeAngelo., Teng, Q., & Tan, C. (2014). Enhanced tumor delivery of gemcitabine via PEG-DSPE/TPGS mixed micelles. Molecular Pharmaceutics, 11(4), 1140-1150. https://doi.org/10.1021/mp4005904
Shi, Z., Han, L., & Dong, Y. (2024). Electrochemical sensor based on reduced graphene oxide paste electrode for detection of gemcitabine as a chemotherapy drug in breast cancer. Alexandria Engineering Journal, 102, 49-57. https://doi.org/10.1016/j.aej.2024.05.116
Abdelgawwad, A.M.A., Roca-Sanjuán, D., & Francés-Monerris, A. (2023). Electronic spectroscopy of gemcitabine and derivatives for possible dual-action photodynamic therapy applications. The Journal of Chemical Physics, 159 (22), 224106. https://doi.org/10.1063/5.0170949
Barrington, H., & Samokhvalov, A. (2023). Characterization of tautomeric forms of anti-cancer drug gemcitabine and their interconversion upon mechano-chemical treatment, using ATR-FTIR spectroscopy and complementary methods. Journal of Pharmaceutical and Biomedical Analysis, 226, 115243. https://doi.org/10.1016/j.jpba.2023.115243
Rezkallah, E., Ibrahim, A., Dahy, A.R., Hakiem, A.A. and Mahfouz, R. (2019). DFT and thermal decomposition studies on gemcitabine. Zeitschrift für Physikalische Chemie, 233(10), 1503-1527. https://doi.org/10.1515/zpch-2018-1304
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys.Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev., 64, 4-17. https://doi.org/10.1016/j.addr.2012.09.019
Lipinski, C.A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today, 1, 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007
Lipinski, C.A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34-41. https://doi.org/10.1016/j.addr.2016.04.029
Barton-Burke, Margaret (1999). Gemcitabine: A pharmacologic and clinical overview. Cancer Nursing, 22(2), 176-183.
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.
Reutov, O. (1970). Theoretical principles of organic chemistry, Moscow: Mir Pub.
This work is licensed under a Creative Commons Attribution 4.0 International License.