Some stereoisomers and tautomers of gemcitabine – A DFT treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: gemcitabine, cancer chemotherapy, stereoisomer, tautomers, DFT calculations

Abstract

Gemcitabine which is a cancer chemotherapy agent has a wide application against various types of tumors. In the present study, gemcitabine and its various stereoisomers and also its 1,3- and 1,5-type proton tautomers have been investigated within the constraints of density functional theory (DFT) at the level of B3LYP/6-311++G(d,p). All the isomers/tautomers presently considered (in vacuum conditions) have not only exothermic heat of formation values but also possess favorable Gibbs free energy of formation values and they are electronically stable. Various quantum chemical data have been collected and discussed including UV-VIS spectra.

References

van Moorsel, C.J., Veerman, G., Bergman, A.M., Guechev, A., Vermorken, J.B., Postmus, P.E., & Peters, G.J. (1997). Combination chemotherapy studies with gemcitabine. Seminars in Oncology, 24(2 Suppl 7), S7-17-S7-23. PMID: 9194475.

Moysan, E., Bastiat, G., & Benoit, J-P.(2013). Gemcitabine versus modified gemcitabine: A review of several promising chemical modifications. Molecular Pharmaceutics. Mol. Pharmaceutics, 10(2), 430-444. https://doi.org/10.1021/mp300370t

Brown, K., Dixey, M., Weymouth-Wilson, A., Linclau, B. (2014). The synthesis of gemcitabine. Carbohydrate Research, 387, 59-73. https://doi.org/10.1016/j.carres.2014.01.024

Chatzisideri, T., Leonidis, G., Karampelas, T., Skavatsou, E., Velentza-Almpani, A., Bianchini, F., Tamvakopoulos, C., & Sarli, V. (2022). Integrin-mediated targeted cancer therapy using c(RGDyK)-based conjugates of gemcitabine. Journal of Medicinal Chemistry, 65 (1), 271-284. https://doi.org/10.1021/acs.jmedchem.1c01468

Zhong, H., Mu, J., Du, Y., Xu, Z., Xu, Y., Yu, N., Zhang, S., & Guo, S. (2020). Acid-triggered release of native gemcitabine conjugated in polyketal nanoparticles for enhanced anticancer therapy. Biomacromolecules, 21(2), 803-814. https://doi.org/10.1021/acs.biomac.9b01493

Jiang, Z., Pflug, K., Usama, S. M., Kuai, D., Yan, X., Sitcheran, R., & Burgess, K. (2019). Cyanine–gemcitabine conjugates as targeted theranostic agents for glioblastoma tumor cells. Journal of Medicinal Chemistry, 62(20), 9236-9245. https://doi.org/10.1021/acs.jmedchem.9b01147

Tam, Y.T., Huang,C., Poellmann, M., & Kwon. G.S. (2018). Stereocomplex prodrugs of oligo(lactic acid)n-gemcitabine in poly(ethylene glycol)-block-poly(d,l-lactic acid) micelles for ımproved physical stability and enhanced antitumor efficacy. ACS Nano, 12(7), 7406-7414. https://doi.org/10.1021/acsnano.8b04205

Zhang, H., Sun, Z., Wang, K., Li, N., Chen, H., Tan, X., Li, L., He, Z., & Sun. J. (2018). Multifunctional tumor-targeting cathepsin b-sensitive gemcitabine prodrug covalently targets albumin in situ and ımproves cancer therapy. Bioconjugate Chemistry, 29(6), 1852-1858. https://doi.org/10.1021/acs.bioconjchem.8b00223

Karampelas, T., Skavatsou, E., Argyros, O., Fokas, D., & Tamvakopoulos, C. (2017). Gemcitabine based peptide conjugate with ımproved metabolic properties and dual mode of efficacy. Molecular Pharmaceutics, 14(3), 674-685. https://doi.org/10.1021/acs.molpharmaceut.6b00961

Karampelas, T., Argyros, O., Sayyad, N., Spyridaki, K., Pappas, C., Morgan, K., Kolios, G., Millar, R.P., Liapakis, G., Tzakos, A.G., Fokas, D., & Tamvakopoulos, C. (2014). GnRH-gemcitabine conjugates for the treatment of androgen-ındependent prostate cancer: pharmacokinetic enhancements combined with targeted drug delivery. Bioconjugate Chemistry, 25(4), 813-823. https://doi.org/10.1021/bc500081g

Wang, S., Cen, D., & Zhang, C.A. (2024). Cathepsin B-sensitive gemcitabine prodrug for enhanced pancreatic cancer therapy. Journal of Pharmaceutical Sciences, 113(7), 1927-1933. https://doi.org/10.1016/j.xphs.2024.03.018

Wang, R., Li, Y., Gao, J., & Luan, Y. (2022). WRQ-2, a gemcitabine prodrug, reverses gemcitabine resistance caused by hENT1 inhibition. Drug Discoveries & Therapeutics, 16(6), 286-292. https://doi.org/10.5582/ddt.2022.01077

Hamsici, S., Ekiz, M.S., Ciftci, G.C., Tekinay, A.B., & Guler, M.O. (2017). Gemcitabine Integrated Nano-Prodrug Carrier System. Bioconjugate Chemistry, 28(5), 1491-1498. https://doi.org/10.1021/acs.bioconjchem.7b00155

Wang, M., Qu, K., Zhao, P., Yin, X., Meng, Y., Herdewijn, P., Liu, C., Zhang, L., & Xia, X. (2023). Synthesis and anticancer evaluation of acetylated-lysine conjugated gemcitabine prodrugs. RSC Medicinal Chemistry, 14(8), 1572-1580. https://doi.org/10.1039/D3MD00190C

Li, Y., Liu, Y., Chen, Y., Wang, K., & Luan, Y. (2022). Design, synthesis and antitumor activity study of a gemcitabine prodrug conjugated with a HDAC6 inhibitor. Bioorganic & Medicinal Chemistry Letters, 72, 128881. https://doi.org/10.1016/j.bmcl.2022.128881

Han, H. , Valdepérez, D., Jin, B., Yang, Q, Li, Z., Wu, Y., Pelaz, B., Parak, W.J., & Ji, J . (2017). Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano, 11(2), 1281-1291. https://doi.org/10.1021/acsnano.6b05541

Han, H., Li, S., Zhong, Y., Huang, Y., Wang, K ., Jin, Q., Ji, J., & Yao, K. (2022). Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences, 17(1), 35-52. https://doi.org/10.1016/j.ajps.2021.06.001

Hawryłkiewicz, A., & Ptaszyńska, N. (2021). Gemcitabine peptide-based conjugates and their application intargeted tumor therapy. Molecules, 26(2), 364. https://doi.org/10.3390/molecules26020364

Zhong,W., Zhang, X., Duan, X., Liu, H., Fang, Y., Luo, M., Fang, Z., Miao, C., Lin, D., & Wu, J. (2022). Redox-responsive self-assembled polymeric nanoprodrug for delivery of gemcitabine in B-cell lymphoma therapy. Acta Biomaterialia 144, 67-80. https://doi.org/10.1016/j.actbio.2022.03.035

Wang, Y, Fan, W., Dai, X., Katragadda, U., Mckinley, DeAngelo., Teng, Q., & Tan, C. (2014). Enhanced tumor delivery of gemcitabine via PEG-DSPE/TPGS mixed micelles. Molecular Pharmaceutics, 11(4), 1140-1150. https://doi.org/10.1021/mp4005904

Shi, Z., Han, L., & Dong, Y. (2024). Electrochemical sensor based on reduced graphene oxide paste electrode for detection of gemcitabine as a chemotherapy drug in breast cancer. Alexandria Engineering Journal, 102, 49-57. https://doi.org/10.1016/j.aej.2024.05.116

Abdelgawwad, A.M.A., Roca-Sanjuán, D., & Francés-Monerris, A. (2023). Electronic spectroscopy of gemcitabine and derivatives for possible dual-action photodynamic therapy applications. The Journal of Chemical Physics, 159 (22), 224106. https://doi.org/10.1063/5.0170949

Barrington, H., & Samokhvalov, A. (2023). Characterization of tautomeric forms of anti-cancer drug gemcitabine and their interconversion upon mechano-chemical treatment, using ATR-FTIR spectroscopy and complementary methods. Journal of Pharmaceutical and Biomedical Analysis, 226, 115243. https://doi.org/10.1016/j.jpba.2023.115243

Rezkallah, E., Ibrahim, A., Dahy, A.R., Hakiem, A.A. and Mahfouz, R. (2019). DFT and thermal decomposition studies on gemcitabine. Zeitschrift für Physikalische Chemie, 233(10), 1503-1527. https://doi.org/10.1515/zpch-2018-1304

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys.Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev., 64, 4-17. https://doi.org/10.1016/j.addr.2012.09.019

Lipinski, C.A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today, 1, 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007

Lipinski, C.A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34-41. https://doi.org/10.1016/j.addr.2016.04.029

Barton-Burke, Margaret (1999). Gemcitabine: A pharmacologic and clinical overview. Cancer Nursing, 22(2), 176-183.

Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.

Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.

Reutov, O. (1970). Theoretical principles of organic chemistry, Moscow: Mir Pub.

Published
2025-03-07
How to Cite
Türker, L. (2025). Some stereoisomers and tautomers of gemcitabine – A DFT treatment. Earthline Journal of Chemical Sciences, 12(2), 155-168. https://doi.org/10.34198/ejcs.12225.155168
Section
Articles