Some isomers of boron-nitrogen doped phenanthrene – DFT treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: phenanthrene, boron and nitrogen substitution, DFT calculations, perturbations, NICS

Abstract

Phenanthrene is an even alternant aromatic hydrocarbon. In adjacent positions simultaneously boron and nitrogen doped phenanthrene and some of their derivatives have found some technological applications. In the present study, isomers of phenanthrene perturbed as mentioned above have been considered within the restrictions of density functional theory at the level of B3LYP/6-311++G(d,p) level. All the isomeric structures presently considered are thermally favored and electronically stable at the standard states. Various structural and quantum chemical data have been collected and discussed, including UV-VIS spectra. Also the NICS (0) data have been obtained for the isomers.

References

Clar, E. (1972). The aromatic sextet. London: Wiley.

Clar, E. (1964). Polycyclic hydrocarbons.1. London: Academic Press.

Dewar, J.M.S. (1969). The molecular orbital theory of organic chemistry. New York: McGraw-Hill.

Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.

Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.

Stark, J.G. (2004). Chemistry data book. London: Hodder.

Huang, H., Liu, L., Wang, J., Zhou, Y., Hu, H., Ye, Liu, X.G., Xu, Z., Xu, H., Yang, W., Wang, Y., Peng, Y., Yang, P., Sun, J., Yan, P., Cao, X., & Tang, B.Z. (2022). Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chem. Sci., 13(11), 3129-3139. https://doi.org/10.1039/d2sc00380e

Marwitz, A.J.V., Matus, M.H., Zakharov, L.N., Dixon, D.A., & Liu S.-Y. (2009). A hybrid organic/inorganic benzene. Angew. Chem. Int. Ed., 48(5), 973-977. doi:10.1002/anie.200805554. PMID 19105174

Wang, J-Y., & Pei, J. (2016). BN-embedded aromatics for optoelectronic applications. Chinese Chemical Letters, 27(8), 1139-1146. https://doi.org/10.1016/j.cclet.2016.06.014

Phukan, A., Kalagi, R., Gadre, S., & Jemmis, E. (2004). Structure, reactivity and aromaticity of acenes and their BN analogues: A density functional and electrostatic investigation. Inorg. Chem., 43(19), 5824-5832. https://doi.org/10.1021/ic049690o

Ito, S., Murata, T., Hasegawa, M., Bito, Y., Toyoguchi, Y. (1997). Study on CxN and CxS with disordered carbon structure as the anode materials for secondary lithium batteries. J. Power Sources, 68(2), 245-248. https://doi.org/10.1016/S0378-7753(96)02588-8

Endo, M., Kim, C., Karaki, T., Nishimura, Y., Matthews, M.J., & Brown, S.D.M. (1999). Anode performance of a Li ion battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers. Carbon, 37(4), 561-568. https://doi.org/10.1016/S0008-6223(98)00222-X

Kurita, N., & Endo, M. (2002). Molecular orbital calculations on electronic and Li-adsorption properties of sulfur-, phosphorus- and silicon-substituted disordered carbons. Carbon, 40, 253-260. https://doi.org/10.1016/S0008-6223(01)00089-6

Hasegawa, T., Suzuki, T., Mukai, R., & Tamon, H. (2004). Semi-empirical molecular orbital calculations on the Li ion storage states in heteroatom-substituted carbon materials. Carbon, 42(11), 2195-2200. https://doi.org/10.1016/j.carbon.2004.04.045

Velinova, M., Georgiev, V., Todorova, T., Madjarova, G., Ivanova, A., & Tadjer, A. (2010). Boron-nitrogen- and boron-substituted anthracenes and phenanthrenes as models for doped carbon-based materials. Journal of Molecular Structure: THEOCHEM, 955 (1-3), 97-108. https://doi.org/10.1016/j.theochem.2010.06.003

Sergeeva, A.P., Piazza, Z.A., Romanescu, C., Li, W-L., Boldyrev, A.I., & Wang, L-S. (2012). B22– and B23–: All-boron analogues of anthracene and phenanthrene. Journal of the American Chemical Society, 134 (43), 18065-18073. https://doi.org/10.1021/ja307605t

Greig, L.M., Kariuki, B.M., Habershon, S., Spencer, N., Johnston, R.L., Harris, K.D.M., & Philp, D. (2002). Solid-state and solution phase reactivity of 10-hydroxy-10,9-boroxophenanthrene: a model building block for self-assembly processes. New J. Chem., 26, 701-710. https://doi.org/10.1039/B110285K

Pinheiro, M. Jr., Ferrão, L.F.A., Bettanin, F.A.J., Aquino, A., Machado, F.B.C., & Lischka, H. (2017). How to efficiently tune the biradicaloid nature of acenes by chemical doping with boron and nitrogen. Phys. Chem. Chem. Phys., 19, 19225

Yongkang, G., Chen, C., & Wang, X-Y. (2023). Recent advances in boron‐containing acenes: synthesis, properties, and optoelectronic applications. Chinese Journal of Chemistry, 41(11), 1355-1373. https://doi.org/10.1002/cjoc.202200700

Geffroy, B., le Roy, P., & Prat, C. (2006). Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int., 55(6), 572-582. https://doi.org/10.1002/pi.1974

Chen, H.-W., Lee, J.-H., Lin, B.-Y., Chen S., & Wu, S.-T. (2018). Liquid crystal, display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl., 7, 17168. https://doi.org/10.1038/lsa.2017.168

Beaujuge, P.M., & Fréchet, J.M.J. (2011). Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc., 133(50), 20009-20029. https://doi.org/10.1021/ja2073643

Cheng, P., Li, G., Zhan, X., & Yang, Y. (2018). Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photon., 12, 131-142 . https://doi.org/10.1038/s41566-018-0104-9

Wu, W., Liu, Y., & Zhu, D. (2010). π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. Chem. Soc. Rev., 39, 1489-1502. https://doi.org/10.1039/B813123F

Wang, C., Dong, H., Hu, W., Liu, Y., & Zhu, D. (2012). Semi conducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chemical Reviews, 112(4), 2208-2267. https://doi.org/10.1021/cr100380z

Sirringhaus, H. (2014). 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater., 26 (9), 1319-1335. https://doi.org/10.1002/adma.201304346

Chen, X., Tan, D., & Yang, D-T. (2022). Multiple-boron-nitrogen (multi-BN) doped π-conjugated systems for optoelectronic. J. Mater. Chem. C, 10, 13499-13532. https://doi.org/10.1039/D2TC01106A

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.

Ferguson, L.N. (1969). The modern structural theory of organic chemistry. New Delhi: Prentice-Hall of India.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s

Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088

Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem., Soc. Rev., 44(18), 6597-6615. https://doi.org/10.1039/C5CS00114E

Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.

Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753

Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d

Corminboeuf, C., Heine, T., & Weber, J. (2003). Evaluation of aromaticity: A new dissected NICS model based on canonical orbitals. Phys. Chem. Chem. Phys., 5, 246-251. https://doi.org/10.1039/B209674A

Stanger, A. (2006). Nucleus-independent chemical shifts (NICS): Distance dependence and revised criteria for aromaticity and antiaromaticity. The Journal of Organic Chemistry, 71(3), 883-893. https://doi.org/10.1021/jo051746o

Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P.R. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105(10), 3842-3888. https://doi.org/10.1021/cr030088+

Published
2024-11-16
How to Cite
Türker, L. (2024). Some isomers of boron-nitrogen doped phenanthrene – DFT treatment . Earthline Journal of Chemical Sciences, 12(1), 47-64. https://doi.org/10.34198/ejcs.12125.047064
Section
Articles