Some isomers of boron-nitrogen doped phenanthrene – DFT treatment
Abstract
Phenanthrene is an even alternant aromatic hydrocarbon. In adjacent positions simultaneously boron and nitrogen doped phenanthrene and some of their derivatives have found some technological applications. In the present study, isomers of phenanthrene perturbed as mentioned above have been considered within the restrictions of density functional theory at the level of B3LYP/6-311++G(d,p) level. All the isomeric structures presently considered are thermally favored and electronically stable at the standard states. Various structural and quantum chemical data have been collected and discussed, including UV-VIS spectra. Also the NICS (0) data have been obtained for the isomers.
References
Clar, E. (1972). The aromatic sextet. London: Wiley.
Clar, E. (1964). Polycyclic hydrocarbons.1. London: Academic Press.
Dewar, J.M.S. (1969). The molecular orbital theory of organic chemistry. New York: McGraw-Hill.
Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
Stark, J.G. (2004). Chemistry data book. London: Hodder.
Huang, H., Liu, L., Wang, J., Zhou, Y., Hu, H., Ye, Liu, X.G., Xu, Z., Xu, H., Yang, W., Wang, Y., Peng, Y., Yang, P., Sun, J., Yan, P., Cao, X., & Tang, B.Z. (2022). Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chem. Sci., 13(11), 3129-3139. https://doi.org/10.1039/d2sc00380e
Marwitz, A.J.V., Matus, M.H., Zakharov, L.N., Dixon, D.A., & Liu S.-Y. (2009). A hybrid organic/inorganic benzene. Angew. Chem. Int. Ed., 48(5), 973-977. doi:10.1002/anie.200805554. PMID 19105174
Wang, J-Y., & Pei, J. (2016). BN-embedded aromatics for optoelectronic applications. Chinese Chemical Letters, 27(8), 1139-1146. https://doi.org/10.1016/j.cclet.2016.06.014
Phukan, A., Kalagi, R., Gadre, S., & Jemmis, E. (2004). Structure, reactivity and aromaticity of acenes and their BN analogues: A density functional and electrostatic investigation. Inorg. Chem., 43(19), 5824-5832. https://doi.org/10.1021/ic049690o
Ito, S., Murata, T., Hasegawa, M., Bito, Y., Toyoguchi, Y. (1997). Study on CxN and CxS with disordered carbon structure as the anode materials for secondary lithium batteries. J. Power Sources, 68(2), 245-248. https://doi.org/10.1016/S0378-7753(96)02588-8
Endo, M., Kim, C., Karaki, T., Nishimura, Y., Matthews, M.J., & Brown, S.D.M. (1999). Anode performance of a Li ion battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers. Carbon, 37(4), 561-568. https://doi.org/10.1016/S0008-6223(98)00222-X
Kurita, N., & Endo, M. (2002). Molecular orbital calculations on electronic and Li-adsorption properties of sulfur-, phosphorus- and silicon-substituted disordered carbons. Carbon, 40, 253-260. https://doi.org/10.1016/S0008-6223(01)00089-6
Hasegawa, T., Suzuki, T., Mukai, R., & Tamon, H. (2004). Semi-empirical molecular orbital calculations on the Li ion storage states in heteroatom-substituted carbon materials. Carbon, 42(11), 2195-2200. https://doi.org/10.1016/j.carbon.2004.04.045
Velinova, M., Georgiev, V., Todorova, T., Madjarova, G., Ivanova, A., & Tadjer, A. (2010). Boron-nitrogen- and boron-substituted anthracenes and phenanthrenes as models for doped carbon-based materials. Journal of Molecular Structure: THEOCHEM, 955 (1-3), 97-108. https://doi.org/10.1016/j.theochem.2010.06.003
Sergeeva, A.P., Piazza, Z.A., Romanescu, C., Li, W-L., Boldyrev, A.I., & Wang, L-S. (2012). B22– and B23–: All-boron analogues of anthracene and phenanthrene. Journal of the American Chemical Society, 134 (43), 18065-18073. https://doi.org/10.1021/ja307605t
Greig, L.M., Kariuki, B.M., Habershon, S., Spencer, N., Johnston, R.L., Harris, K.D.M., & Philp, D. (2002). Solid-state and solution phase reactivity of 10-hydroxy-10,9-boroxophenanthrene: a model building block for self-assembly processes. New J. Chem., 26, 701-710. https://doi.org/10.1039/B110285K
Pinheiro, M. Jr., Ferrão, L.F.A., Bettanin, F.A.J., Aquino, A., Machado, F.B.C., & Lischka, H. (2017). How to efficiently tune the biradicaloid nature of acenes by chemical doping with boron and nitrogen. Phys. Chem. Chem. Phys., 19, 19225
Yongkang, G., Chen, C., & Wang, X-Y. (2023). Recent advances in boron‐containing acenes: synthesis, properties, and optoelectronic applications. Chinese Journal of Chemistry, 41(11), 1355-1373. https://doi.org/10.1002/cjoc.202200700
Geffroy, B., le Roy, P., & Prat, C. (2006). Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int., 55(6), 572-582. https://doi.org/10.1002/pi.1974
Chen, H.-W., Lee, J.-H., Lin, B.-Y., Chen S., & Wu, S.-T. (2018). Liquid crystal, display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl., 7, 17168. https://doi.org/10.1038/lsa.2017.168
Beaujuge, P.M., & Fréchet, J.M.J. (2011). Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc., 133(50), 20009-20029. https://doi.org/10.1021/ja2073643
Cheng, P., Li, G., Zhan, X., & Yang, Y. (2018). Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photon., 12, 131-142 . https://doi.org/10.1038/s41566-018-0104-9
Wu, W., Liu, Y., & Zhu, D. (2010). π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. Chem. Soc. Rev., 39, 1489-1502. https://doi.org/10.1039/B813123F
Wang, C., Dong, H., Hu, W., Liu, Y., & Zhu, D. (2012). Semi conducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chemical Reviews, 112(4), 2208-2267. https://doi.org/10.1021/cr100380z
Sirringhaus, H. (2014). 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater., 26 (9), 1319-1335. https://doi.org/10.1002/adma.201304346
Chen, X., Tan, D., & Yang, D-T. (2022). Multiple-boron-nitrogen (multi-BN) doped π-conjugated systems for optoelectronic. J. Mater. Chem. C, 10, 13499-13532. https://doi.org/10.1039/D2TC01106A
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
Ferguson, L.N. (1969). The modern structural theory of organic chemistry. New Delhi: Prentice-Hall of India.
Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.
Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209
Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221
Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088
Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem., Soc. Rev., 44(18), 6597-6615. https://doi.org/10.1039/C5CS00114E
Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.
Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753
Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458
Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d
Corminboeuf, C., Heine, T., & Weber, J. (2003). Evaluation of aromaticity: A new dissected NICS model based on canonical orbitals. Phys. Chem. Chem. Phys., 5, 246-251. https://doi.org/10.1039/B209674A
Stanger, A. (2006). Nucleus-independent chemical shifts (NICS): Distance dependence and revised criteria for aromaticity and antiaromaticity. The Journal of Organic Chemistry, 71(3), 883-893. https://doi.org/10.1021/jo051746o
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P.R. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105(10), 3842-3888. https://doi.org/10.1021/cr030088+
This work is licensed under a Creative Commons Attribution 4.0 International License.