Some strong dimers of borazine – A DFT treatment
Abstract
Borazine is an interesting compound, and considered weakly aromatic. In the present study, weak and strong dimers of borazine are defined and some strong dimers of borazine are considered within the restrictions of density functional theory at the level of B3LYP/cc-PVTZ. All the structures considered are electronically stable, thermodynamically exothermic and have favorable Gibbs’ free energy of formation values at the standard states. Various quantum chemical properties of them, including the HOMO and LUMO energies, UV-VIS spectra, etc., have been obtained and discussed. Also the NICS (0) data have been obtained for the simplest strong dimer and some discussion is provided.
References
Huang, Z., Wang, S., Dewhurst, R. D., Ignat'ev, N. V., Finze, M., & Braunschweig, H. (2019). Boron: Its role in energy-related processes and applications. Angewandte Chemie International Edition, 59(23), 8800-8816. https://doi.org/10.1002/anie.201911108
Zlotin, S. G., Dalinger, I. L., Makhova, N. N., & Tartakovsky, V. A. (2020). Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. Russian Chemical Reviews, 89(1), 1-54. https://doi.org/10.1070/RCR4908
Anitoff, O. (1977). Study of routes to the synthesis of nitrated boron-nitrogen compounds (thesis). Sorbonne University. https://coilink.org/20.500.12592/1kh2egj
Wang, G., Jing, S., Liu, G., & Gao, X. (2020). Review on the synthesis and properties of the energetic compound containing boron. Current Organic Chemistry, 24(10), 1097-1107. https://doi.org/10.2174/1385272824999200516180719
Zeng, X., Li, N., & Jiao, Q. (2018). Carbon-free energetic materials: Computational study on nitro-substituted BN-cage molecules with high heat of detonation and stability. RSC Advances, 8, 14654-14662. https://doi.org/10.1039/C7RA13476B
Li, Y., Hao, J., Liu, H., Lu, S., & Tse, J. S. (2015). High-energy density and superhard nitrogen-rich B-N compounds. Physical Review Letters, 115, 105502. https://doi.org/10.1103/PhysRevLett.115.105502
Bettinger, H. F., Kar, T., & Sánchez-García, E. (2009). Borazine and benzene homo- and heterodimers. The Journal of Physical Chemistry A, 113(14), 3353-3359. https://doi.org/10.1021/jp808173h
Ina, L. M., & Ball, D. W. (2017). Density functional theory calculations on nitrated boroxines as possible high energy-density materials. Ohio Journal of Science, 117(2). https://doi.org/10.18061/ojs.v117i2.5298
Zagorac, J., Fonovic, M., Djukic, M. B., Butulija, S., Prikhna, T., & Zagorac, D. (2024). Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations. Procedia Structural Integrity, 54, 453-459. https://doi.org/10.1016/j.prostr.2024.01.106
Verma, K., & Viswanathan, K. S. (2017). The borazine dimer: The case of a dihydrogen bond competing with a classical hydrogen bond. Physical Chemistry Chemical Physics, 19, 19067-19074. https://doi.org/10.1039/C7CP04056C
Verma, K., & Viswanathan, K. S. (2018). A tale of two structures: The stacks and Ts of borazine and benzene hetero and homo dimers. ChemistrySelect, 3(3), 864-873. https://doi.org/10.1002/slct.201703005
Kawahara, S., Tsuzuki, S., & Uchimaru, T. (2003). Ab initio calculation of interaction nature of borazine (B₃N₃H₆) dimer. Journal of Chemical Physics, 119, 10081-10087. https://doi.org/10.1063/1.1616914
Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods II. Application. Journal of Computational Chemistry, 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A. R. (1997). Molecular modeling (2nd ed.). Essex: Longman.
Fletcher, P. (1990). Practical methods of optimization (1st ed.). New York: Wiley.
Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules (1st ed.). London: Oxford University Press.
Cramer, C. J. (2004). Essentials of computational chemistry (2nd ed.). Chichester, West Sussex: Wiley.
Young, D. C. (2001). Computational chemistry. New York: Wiley.
Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Physical Review B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
Wavefunction Inc. (2006). SPARTAN 06. Irvine, CA, USA.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Türker, L. (1999). AM1 treatment of cyclophanes with vinylic bridges. Polycyclic Aromatic Compounds, 13, 25-31. https://doi.org/10.1080/10406639908020540
Türker, L., & Gümüş, S. (2009). A theoretical study on some (1,4)cyclophanes. Polycyclic Aromatic Compounds, 29(2), 103-122. https://doi.org/10.1080/10406630902861411
Dewar, J. M. S. (1969). The molecular orbital theory of organic chemistry. New York: McGraw-Hill.
Dewar, M. J. S., & Dougherty, R. C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosetta.
Minkin, V. I., Glukhovtsev, M. N., & Simkin, B. Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.
Schleyer, P. R., & Jiao, H. (1996). What is aromaticity? Pure and Applied Chemistry, 68, 209-218. https://doi.org/10.1351/pac199668020209
Schleyer, P. R. (2001). Introduction: Aromaticity. Chemical Reviews, 101, 1115-1118. https://doi.org/10.1021/cr0103221
Cyranski, M. K., Krygowski, T. M., Katritzky, A. R., & Schleyer, P. R. (2002). To what extent can aromaticity be defined uniquely? Journal of Organic Chemistry, 67, 1333-1338. https://doi.org/10.1021/jo016255s
Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105(10), 3842-3888. https://doi.org/10.1021/cr030088
Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chemical Society Reviews, 44(18), 6597-6615. https://doi.org/10.1039/C5CS00114E
Dickens, T. K., & Mallion, R. B. (2016). Topological ring-currents in conjugated systems. MATCH Communications in Mathematical and in Computer Chemistry, 76, 297-356.
Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. Journal of Organic Chemistry, 75(7), 2281-2288. https://doi.org/10.1021/jo1000753
Monajjemi, M., & Mohammadian, N. T. (2015). S-NICS: An aromaticity criterion for nano molecules. Journal of Computational and Theoretical Nanoscience, 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458
Schleyer, P. R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N. J. R. E. (1996). Nucleus independent chemical shifts: A simple and efficient aromaticity probe. Journal of the American Chemical Society, 118, 6317-6318. https://doi.org/10.1021/ja960582d
Corminboeuf, C., Heine, T., & Weber, J. (2003). Evaluation of aromaticity: A new dissected NICS model based on canonical orbitals. Physical Chemistry Chemical Physics, 5, 246-251. https://doi.org/10.1039/B209674A
Stanger, A. (2006). Nucleus-independent chemical shifts (NICS): Distance dependence and revised criteria for aromaticity and antiaromaticity. Journal of Organic Chemistry, 71(3), 883-893. https://doi.org/10.1021/jo051746o
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P.R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105(10), 3842-3888. https://doi.org/10.1021/cr030088+
Báez-Grez, R., & Pino-Rios, R. (2022). The hidden aromaticity in borazine. RSC Advances, 12, 7906-7910. https://doi.org/10.1039/D1RA06457F
Wavefunction Inc. (2005). SPARTAN: Molecular modeling in physical chemistry. Irvine, CA, USA.
Ferguson, L. N. (1969). The modern structural theory of organic chemistry. New Delhi: Prentice-Hall of India.
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
Anslyn, E. V., & Dougherty, D. A. (2006). Modern physical organic chemistry. Sausalito, CA: University Science Books.
This work is licensed under a Creative Commons Attribution 4.0 International License.