Charged forms of some nitroborazines – A DFT treatment
Abstract
Spark sensitivity of explosives is an important subject. One of the causes of accidental explosion of explosives is due to static electricity. The present study deals with the development of static electric charge on nitroborazines resulting ionic charges eventually. In the present study, mono ionic forms of various nitroborazines are considered within the restrictions of unrestricted density functional theory at the level of UB3LYP/6-311++G(d,p) level. All the ionic systems of present interest are thermally favored and electronically stable at the standard states. Various structural and quantum chemical data have been collected and discussed, including UV-VIS spectra.
References
Huang, Z., Wang, S., Dewhurst, R. D., Ignat’ev, N. V., Finze, M., & Braunschweig, H. (2019). Boron: Its role in energy-related processes and applications. Angewandte Chemie International Edition, 59(23), 8800-8816. https://doi.org/10.1002/anie.201911108
Zlotin, S.G., Dalinger, I.L., Makhova, N.N., & Tartakovsky, V.A. (2020). Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. Russian Chemical Reviews, 89(1), 1 54. https://doi.org/10.1070/RCR4908
Ina, L.M., & Ball, D.W. (2017). Density functional theory calculations on nitrated boroxines as possible high energy-density materials. Ohio Journal of Science, 117(2). https://doi.org/10.18061/ojs.v117i2.5298
Wang, G., Jing, S., Liu, G., & Gao, X. (2020). Review on the synthesis and properties of the energetic compound containing boron. Current Organic Chemistry, 24(10), 1097-1107. https://doi.org/10.2174/1385272824999200516180719
Zeng, X., Li, N., & Jiao, Q. (2018). Carbon-free energetic materials: Computational study on nitro-substituted BN-cage molecules with high heat of detonation and stability. RSC Advances, 8, 14654-14662. https://doi.org/10.1039/C7RA13476B
Li, Y., Hao, J., Liu, H., Lu, S., & Tse, J.S. (2015). High-energy density and superhard nitrogen-rich B-N compounds. Physical Review Letters, 115, 105502. https://doi.org/10.1103/PhysRevLett.115.105502
Bettinger, H.F., Kar, T., & Sánchez-García, E. (2009). Borazine and benzene homo- and heterodimers. The Journal of Physical Chemistry A, 113(14), 3353-3359. https://doi.org/10.1021/jp808173h
Zagorac, J., Fonovic, M., Djukic, M.B., Butulija, S., Prikhna, T., & Zagorac, D. (2024). Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations. Procedia Structural Integrity, 54, 453-459. https://doi.org/10.1016/j.prostr.2024.01.106
Verma, K., & Viswanathan, K.S. (2017). The borazine dimer: The case of a dihydrogen bond competing with a classical hydrogen bond. Physical Chemistry Chemical Physics, 19, 19067-19074. https://doi.org/10.1039/C7CP04056C
Verma, K., & Viswanathan, K.S. (2018). A tale of two structures: The stacks and Ts of borazine and benzene hetero and homo dimers. ChemistrySelect, 3(3), 864-873. https://doi.org/10.1002/slct.201703005
Kawahara, S., Tsuzuki, S., & Uchimaru, T. (2003). Ab initio calculation of interaction nature of borazine (B3N3H6) dimer. Journal of Chemical Physics, 119, 10081-10087. https://doi.org/10.1063/1.1616914
Türker, L. (2025). Some strong dimers of borazine – A DFT treatment. Earthline Journal of Chemical Sciences, 12(1), 85-101. https://doi.org/10.34198/ejcs.12125.085101
Türker, L. (2009). Contemplation on spark sensitivity of certain nitramine type explosives. Journal of Hazardous Materials, 169(1-3), 454-459. https://doi.org/10.1016/j.jhazmat.2009.03.117
Tareev, B. (1975). Physics of dielectric materials. Moscow: Mir Pub.
Hinchliffe, A., & Munn, R.W. (1985). Molecular electromagnetism. NewYork: Wiley.
Zeman, S. (2003). A study of chemical micromechanism of the organic polynitro compounds initiation. In P. Politzer & J. Murray (Eds.), Energetic materials (Vol. 2, pp. 25-52). Elsevier.
Atkins, P.W. (1974). Quanta, A handbook of concepts. Oxford: Clarendon Press.
Atkins, P.W., & De Paula, J. (2002). Atkin’s physical chemistry. Oxford: Oxford University Press.
Hosoya, F., Shiino, K., & Itabashi, K. (1991). Electric spark sensitivity of heat resistant polynitro aromatic compounds. Propell. Explos. Pyrot., 16(3), 119-122. https://doi.org/10.1002/prep.19910160306
Skinner, D., Olso, D., & Block-Bolten, A. (1997). Electrostatic discharge ignition of energetic materials. Propell. Explos. Pyrot., 23(1), 34-42. https://doi.org/10.1002/(SICI)1521-4087(199802)23:1<34::AID-PREP34>3.0.CO;2-V
Koci, J., Zeman, V., & Zeman, S. (2001). Spark sensitivity of polynitro compounds. Part V. A relationship between electric spark and impact sensitivities of energetic materials. HanNeng CaiLiao., 9, 60-65.
Zeman, V., Koci, J., & Zeman, S. (1999). V. Zeman, Spark sensitivity of polynitro compounds. Part II. A correlation with detonation velocities of some polynitro arenes. HanNeng CaiLiao., 7, 127-132.
Zeman, V., Koci, J., & Zeman, S. (1999). Spark sensitivity of polynitro compounds. Part III. A correlation with detonation velocities of some nitramines. HanNeng CaiLiao., 7, 172-175.
Zeman, S. (2006). New aspects of initiation reactivities of energetic materials demonstrated on nitramines. J. Hazard. Mater., 132, 155-164.
Zeman, S., Pelikan, V., & Majzlik, J. (2006). Electric spark sensitivity of nitramines. Part I. Aspects of molecular structure. Cent. Eur. J. Energ. Mater., 3(3) 27-44.
Keshavarz, M.H. (2008). Theoretical prediction of electric spark sensitivity of nitro aromatic compounds based on molecular structure. J. Hazard. Mater., 153, 201-206. https://doi.org/10.1016/j.jhazmat.2007.08.036
Talawar, M.B., Agrawal, A.P., Anniyapan, M., Wani, D.S., Bansode, M.K., & Gore, G.M. (2006). Primary explosives: electrostatic discharge initiation, additive effect and its relation to thermal and explosive characteristics. J. Hazard. Mater., 137 1074-1078. https://doi.org/10.1016/j.jhazmat.2006.03.043
Auzenau, M., & Roux, M. (1995). Electric spark and ESD sensitivity of reactive solids, Part II: energy transfer mechanism and comprehensive study on E50. Propell. Explos. Pyrot., 20, 96-101. https://doi.org/10.1002/prep.19950200211
Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. Journal of Computational Chemistry, 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling (2nd ed.). Essex: Longman.
Fletcher, P. (1990). Practical methods of optimization (1st ed.). New York: Wiley.
Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules (1st ed.). London: Oxford University Press.
Cramer, C.J. (2004). Essentials of computational chemistry (2nd ed.). Chichester, West Sussex: Wiley.
Young, D.C. (2001). Computational chemistry. New York: Wiley.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Physical Review B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
Wavefunction Inc. (2006). SPARTAN 06. Irvine, CA, USA.
Ferguson, L.N. (1969). The modern structural theory of organic chemistry, New Delhi: Prentice-Hall of India.
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.
This work is licensed under a Creative Commons Attribution 4.0 International License.