Some nitroborazines – A DFT treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: nitroborazines, explosives, spectra, density functional, NICS

Abstract

Borazine is an inorganic analogue of benzene and its nitro derivatives recently found some applications. Presently some nitro derivatives of borazine have been considered within the restrictions of density functional theory at the level of B3LYP/6-311++G(d,p) level. It has been found that all the structures of consideration have thermo chemically exothermic heat of formation and favorable Gº values at the standard states and energetically stable. Various structural and quantum chemical data have been collected and discussed, including UV-VIS spectra. Also the NICS (0) data have been obtained for the species which suggest that the structures are aromatic irrespective of whether nitro groups are linked to nitrogen or boron atoms.

References

Abdelmalik, J., & Ball, D.W. (2010). DFT calculations on nitrodiborane compounds as new potential high energy materials. J Mol Model., 16(5), 915-918. https://doi.org/10.1007/s00894-009-0597-8

Hirata, T. (1971). Study on synthesis of N-nitroborazine compounds. II. Borazine derivatives. Dover, New Jersey: Picatinny Arsenal. Reproduced by National Technical Information Service. Technical Memorandum 2011.

Zamani, M., & Keshavarz, M.H. (2014). Thermochemical and performance properties of NO2-substituted borazines as new energetic compounds with high thermodynamic stability. Central European Journal of Energetic Materials, 11(3), 363-381.

Zamani, M., & Keshavarz, M.H. (2015). New NHNO2 substituted borazine- based energetic materials with high detonation performance. Computational Materials Science, 97, 295-303. https://doi.org/10.1016/j.commatsci.2014.10.025

Guin, M., Singh, J.B., Sharma, A., & Elavarasi, S.B. (2023). Density functional theory investigation of triazole substituted nitro borazine derivatives as high energy density material. Materials Today: Proceedings, 72, Part 1, 120-125. https://doi.org/10.1016/j.matpr.2022.06.200

Wu, W-J., Chi, W-J., Li, Q-S., Ji, J-N., & Li, Z-S. (2017). Strategy of improving the stability and detonation performance for energetic material by introducing the boron atoms. Journal of Physical Organic Chemistry, 30(12), 51-59. https://doi.org/10.1002/poc.3699

Koch E.-C., & Klapötke T.M. (2012). Boron-based high explosives. Propellants Explos. Pyrotech., 37(3), 335-344. https://doi.org/10.1002/prep.201100157

Türker, L. (2011). Recent developments in the theory of explosive materials. In T. J. Jansen (Ed.), Explosive materials, materials science and technologies. New York: Nova Science Publishers.

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys.Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R.,Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

Türker, L. (2022). Effect of isotopic nitrogen exchange on NTO molecule-A DFT approach. Earthline Journal of Chemical Sciences, 8(2), 193-204. https://doi.org/10.34198/ejcs.8222.193204

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5) 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326

Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.

Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s

Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088

Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem., Soc. Rev., 44(18), 6597- 6615. https://doi.org/10.1039/C5CS00114E

Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.

Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753

Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d

Corminboeuf, C., Heine, T., & Weber, J. (2003). Evaluation of aromaticity: A new dissected NICS model based on canonical orbitals. Phys. Chem. Chem. Phys., 5, 246-251. https://doi.org/10.1039/B209674A

Stanger, A. (2006). Nucleus-independent chemical shifts (NICS): Distance dependence and revised criteria for aromaticity and antiaromaticity. The Journal of Organic Chemistry, 71(3), 883-893. https://doi.org/10.1021/jo051746o

Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P.R. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105(10), 3842-3888. https://doi.org/10.1021/cr030088+

Published
2025-01-15
How to Cite
Türker, L. (2025). Some nitroborazines – A DFT treatment. Earthline Journal of Chemical Sciences, 12(2), 103-117. https://doi.org/10.34198/ejcs.12225.103117
Section
Articles