Some nitroborazines – A DFT treatment
Abstract
Borazine is an inorganic analogue of benzene and its nitro derivatives recently found some applications. Presently some nitro derivatives of borazine have been considered within the restrictions of density functional theory at the level of B3LYP/6-311++G(d,p) level. It has been found that all the structures of consideration have thermo chemically exothermic heat of formation and favorable Gº values at the standard states and energetically stable. Various structural and quantum chemical data have been collected and discussed, including UV-VIS spectra. Also the NICS (0) data have been obtained for the species which suggest that the structures are aromatic irrespective of whether nitro groups are linked to nitrogen or boron atoms.
References
Abdelmalik, J., & Ball, D.W. (2010). DFT calculations on nitrodiborane compounds as new potential high energy materials. J Mol Model., 16(5), 915-918. https://doi.org/10.1007/s00894-009-0597-8
Hirata, T. (1971). Study on synthesis of N-nitroborazine compounds. II. Borazine derivatives. Dover, New Jersey: Picatinny Arsenal. Reproduced by National Technical Information Service. Technical Memorandum 2011.
Zamani, M., & Keshavarz, M.H. (2014). Thermochemical and performance properties of NO2-substituted borazines as new energetic compounds with high thermodynamic stability. Central European Journal of Energetic Materials, 11(3), 363-381.
Zamani, M., & Keshavarz, M.H. (2015). New NHNO2 substituted borazine- based energetic materials with high detonation performance. Computational Materials Science, 97, 295-303. https://doi.org/10.1016/j.commatsci.2014.10.025
Guin, M., Singh, J.B., Sharma, A., & Elavarasi, S.B. (2023). Density functional theory investigation of triazole substituted nitro borazine derivatives as high energy density material. Materials Today: Proceedings, 72, Part 1, 120-125. https://doi.org/10.1016/j.matpr.2022.06.200
Wu, W-J., Chi, W-J., Li, Q-S., Ji, J-N., & Li, Z-S. (2017). Strategy of improving the stability and detonation performance for energetic material by introducing the boron atoms. Journal of Physical Organic Chemistry, 30(12), 51-59. https://doi.org/10.1002/poc.3699
Koch E.-C., & Klapötke T.M. (2012). Boron-based high explosives. Propellants Explos. Pyrotech., 37(3), 335-344. https://doi.org/10.1002/prep.201100157
Türker, L. (2011). Recent developments in the theory of explosive materials. In T. J. Jansen (Ed.), Explosive materials, materials science and technologies. New York: Nova Science Publishers.
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys.Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R.,Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Türker, L. (2022). Effect of isotopic nitrogen exchange on NTO molecule-A DFT approach. Earthline Journal of Chemical Sciences, 8(2), 193-204. https://doi.org/10.34198/ejcs.8222.193204
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5) 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.
Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209
Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221
Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088
Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem., Soc. Rev., 44(18), 6597- 6615. https://doi.org/10.1039/C5CS00114E
Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.
Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753
Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458
Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d
Corminboeuf, C., Heine, T., & Weber, J. (2003). Evaluation of aromaticity: A new dissected NICS model based on canonical orbitals. Phys. Chem. Chem. Phys., 5, 246-251. https://doi.org/10.1039/B209674A
Stanger, A. (2006). Nucleus-independent chemical shifts (NICS): Distance dependence and revised criteria for aromaticity and antiaromaticity. The Journal of Organic Chemistry, 71(3), 883-893. https://doi.org/10.1021/jo051746o
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P.R. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105(10), 3842-3888. https://doi.org/10.1021/cr030088+
This work is licensed under a Creative Commons Attribution 4.0 International License.