Effect of magnesium or/and titanium on NTO molecule – A DFT study
Abstract
Magnesium or/and titanium composites of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) have been investigated within the restrictions of density functional theory at the levels of B3LYP/6-31++G(d,p) and 6‑311++G(2df,2p). The results indicate that the composites considered are exothermic and favorable in terms of Hº and Gº values. Also they are electronically stable. Various structural, quantum chemical and spectral (IR and UV-VIS) data are collected and discussed. The metals in the structures of the composites acquire some partial positive charges, such that the titanium being more positive than the magnesium in each case. In some of the composites, titanium atom and the nitro group of NTO undergo a kind of complex formation.
References
Yuxiang, O., Boren, C., Jiarong, L., Shuan, D., Jianjuan, L., & Huiping, J. (1994). Synthesis of nitro derivatives of triazoles. Heterocycles, 38, 1651-1664. https://doi.org/10.3987/REV-93-SR21
Rothgery, E.F., Audette, D.E., Wedlich, R.C., & Csejka, D.A. (1991). The study of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one (NTO) by DSC, TGA-MS, and accelerating rate calorimetry (ARC). Thermochim. Acta, 185(2), 235-243. https://doi.org/10.1016/0040-6031(91)80045-K
Beard, B.C., & Sharma, J. (1993). Early decomposition chemistry of NTO (3-nitro-1,2,4-triazol-5-one). J. Energ. Mater., 11(4-5), 325-343. https://doi.org/10.1080/07370659308019715
Xie, Y., Hu, R., Wang, X., Fu, X., & Zhunhua, C. (1991). Thermal behavior of 3-nitro-1,2,4-triazol-5-one and its salts. Thermochim. Acta, 189, 283-296. https://doi.org/10.1016/0040-6031(91)87126-H
Wang, Y.M., Chen, C., & Lin, S.T. (1999). Theoretical studies of the NTO unimolecular decomposition. J. Mol. Struct. (THEOCHEM,) 460, 79-102. https://doi.org/10.1016/s0166-1280(98)00308-x
Türker, L., & Atalar, T. (2006). Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. J. Hazard Mat., A 137, 1333-1344. https://doi.org/10.1016/j.jhazmat.2006.05.015
Zbarskii, V.L., Kuz’min, V.V., & Yudin, N.V. (2004). Synthesis and properties of 1-nitro-4,5-dihydro-1H-1,2,4-triazol-5-one. Russ. J. Org. Chem., 40(7), 1069-1070. https://doi.org/10.1023/B:RUJO.0000045209.00477.56
Meredith, C., Russell, T.P., Mowrey, R.C., & McDonald, J.R. (1998). Decomposition of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO): energetics associated with several proposed initial routes. J. Phys. Chem., A 102, 471-477. https://doi.org/10.1021/jp972602j
Türker, L. (2019). Nitramine derivatives of NTO - A DFT study. Earthline Journal of Chemical Sciences, 1(1), 45-63. https://doi.org/10.34198/ejcs.1119.4563
Lee, K.Y., & Coburn, M.D. (1985). 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive (Report No. LA-10302-MS, Order No. DE86009787, 7 pp.).
Sorescu, D.C., Sutton, T.R.L., Thompson, D.L., Beardallm, D., & Wight, C.A. (1996). Theoretical and experimental studies of the structure and vibrational spectra of NTO. J. Mol. Struct., 84, 87-99. https://doi.org/10.1016/S0022-2860(96)09343-X
Türker, L. (2021). A composite of NTO and TNAZ-A DFT treatment. Earthline Journal of Chemical Sciences, 5(2), 261-274. https://doi.org/10.34198/ejcs.5221.261274
Türker, L. (2024). Tautomers of 2,4-dihydro-3H-1,2,4-triazol-3-one and their composites with NTO - A DFT Treatment. Earthline Journal of Chemical Sciences, 11(1), 121-140. https://doi.org/10.34198/ejcs.11124.121140
Zhao, Y., Chen, S.S., Jin, S.H., Li, Z.H., Zhang, X., Wang, L.T., Mao, Y.F., Guo, H.Y., Li, L. (2017). Heat effects of NTO synthesis in nitric acid solution. Journal of Thermal Analysis and Calorimetry, 128(1), 301-310. https://doi.org/10.1007/s10973-016-5912-x
Krzmarzick, M.J., Khatiwada, R., Olivares, C.I., Abrell, L., Sierra-Alvarez, R., Chorover, J., & Field, J.A. (2015). Biotransformation and degradation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one, by soil bacterial communities. Environmental Science & Technology, 49(9), 5681-8.
Deshmukh, M.B., Wagh, N.D., Sikder, A.K., Borse, A.U., & Dalal, D.S. (2014). Cyclodextrin nitrate ester/H2SO4 as a novel nitrating system for efficient synthesis of insensitive high explosive 3-nitro-1,2,4-triazol-5-one. Industrial & Engineering Chemistry Research, 53(50), 19375-19379. https://doi.org/10.1021/ie502555a
Sarangapani, R., Ramavat, V., Reddy, T.S., Patil, R.S., Gore, G.M., & Sikder, A.K. (2014). Effect of particle size and shape of NTO on micromeritic characteristics and its explosive formulations. Powder Technology, 253, 276-283. https://doi.org/10.1016/j.powtec.2013.11.029
Lasota, J., Chyłek, Z., & Trzciński, W. (2015). Methods for preparing spheroidal particles of 3-nitro-1,2,4-triazol-5-one (NTO). Central European Journal of Energetic Materials, 12(4), 769-783.
Hanafi,S., Trache,D., Abdous,S., Bensalem,Z., Mezroua, A. (2019). 5-Nitro-1,2,4-triazole-3-one. A review of recent advances. Chinese Journal of Energetic Materials, 27(4), 326-347. https://doi.org/10.11943/CJEM2018371
Türker, L. (2020). 1,3,5-Triamino-2,4,6-trinitrobenzene and magnesium interaction - A DFT treatment. Earthline Journal of Chemical Sciences, 5(1), 175-190. https://doi.org/10.34198/ejcs.5121.175190
Russel, M.S. (2009). The chemistry of fireworks, Cambridge: RSC Pub.
Massis, T.M., Fronabarger, J.W., & Sanborn, W.B. New explosive materials and pyrotechnic formulations with improved safety and sensitivity properties (United States Department of Energy under Contract DE-AC04-94AL85000). 14186c9f607e42b2fb2bb77edaf945a089b3.pdf
Shaw, A.P., Sadangi, R.K., Poret, J.C., & Csernica, C.M. (2015). Metal-element compounds of titanium, zirconium, and hafnium as pyrotechnic fuels, In Proc. of 41st Int. Pyrotechnic Seminar (EUROPYRO 2015), Toulouse, France, 1-11. 7de423ef045f1bd5d36e92331f5b34972e14.pdf
Türker, L. (2020). Effect of titanium on FOX-7 - A DFT treatment. Earthline Journal of Chemical Sciences, 5(1), 19-34. https://doi.org/10.34198/ejcs.5121.1934
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Türker, L. (2016). Thermobaric and enhanced blast explosives (TBX and EBX). Defence Technology, 12(6), 423-445. https://doi.org/10.1016/j.dt.2016.09.002
Glasstone, S., and Lewis, D. (1970). Elements of physical chemistry. London: Macmillan.
Stark, J.G., & Wallace, H.G. (2004). Chemistry data book. London: Hodder.
This work is licensed under a Creative Commons Attribution 4.0 International License.