Some dinitramines from tetraaminoethylene and their interactions with magnesium – DFT study

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: diaminoethylenedinitramine, tetraaminoethylene, explosive, DFT calculations, magnesium

Abstract

Certain isomeric dinitramines derived from tetraaminoethylene have been designed which possess an embedded push-pull type conjugated system(s) operative in different extents which may attract attention as an insensitive high energy materials. Those structures and their magnesium composites have been investigated within the restrictions of density functional theory at the level of B3LYP/6-311++G(d,p). The results indicate that the dinitramines considered are exothermic and favorable in terms of Hº and Gº values. However, their magnesium composites are not all stable, (two of them decompose) and Mg atom acquires some positive charge in each case. Various structural, quantum chemical and UV-VIS spectral data are collected and discussed.

References

Shishkov, I.F., Vilkov, L.V., Kolonits, M., & Rozsondai, B. (1991). The molecular geometries of some cyclic nitramines in the gas phase. Struct. Chem., 2, 57-64. https://doi.org/10.1007/BF00673490

Gribov, P.S., Suponitsky, K.Yu., & Sheremetev, A.B. (2022). Efficient synthesis of N-(chloromethyl)nitramines via TiCl4-catalyzed chlorodeacetoxylation. New J. Chem., 46, 17548-17553. https://doi.org/10.1039/D2NJ03521A

Yan, Q-L., Zeman, S., & Elbeih, A. (2013). Thermal behavior and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines. Thermochimica Acta, 562, 56-64. https://doi.org/10.1016/j.tca.2013.03.041

Zhang, J., He, C., Parrish, D.A., & Shreeve, J.M. (2013). Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials. Chemistry, A European Journal, 19(27), 8929-8936. https://doi.org/10.1002/chem.201300747

Oxley, J.C., Hiskey, M., Naud, D., & Szekeres, R. (1992). Thermal decomposition of nitramines: dimethylnitramine, diisopropylnitramine, and N-nitropiperidine. The Journal of Physical Chemistry, 96(6), 2505-2509. https://doi.org/10.1021/j100185a023

Keshavarz, M.H. (2009). Simple method for prediction of activation energies of the thermal decomposition of nitramines. Journal of Hazardous Materials, 162(2-3), 1557-1562. https://doi.org/10.1016/j.jhazmat.2008.06.049

Borges Jr., I. (2008). Excited electronic and ionized states of N,N-dimethylnitramine. Chemical Physics, 349, 256-262.

Ermolin, N.E., & Zarko, V.E. (1998). Modeling of cyclic-nitramine combustion. Combust. Explos. Shock Waves, 34, 485-501. https://doi.org/10.1007/BF02672671

Shu, Y., Korsounskii, B.L., & Nazina, G.M. (2004). The mechanism of thermal decomposition of secondary nitramines. Russ. Chem. Rev., 73, 293-307. https://doi.org/10.1070/RC2004v073n03ABEH000802

Elbasuney, S., Yehia, M., Hamed, A., Ismael, S., & El Gamal, M. (2021). Ferric oxide colloid: novel nanocatalyst for heterocyclic nitramines. J Mater Sci: Mater Electron, 32, 4185-4195. https://doi.org/10.1007/s10854-020-05162-0

Patil, V.B., Zalewski, K., Schuster, J., Bělina, P., Trzciński, W.A., & Zeman, S. (2021). A new insight into the energetic co-agglomerate structures of attractive nitramines. Chemical Engineering Journal, 420, 130472. https://doi.org/10.1016/j.cej.2021.130472

Vinogradov, D.B., Bulatov, P.V., Petrov, E. Yu., & Tartakovsky, V.A. (2021). New access to azido-substituted alkylnitramines. Mendeleev Communications, 31(6), 795- 796. https://doi.org/10.1016/j.mencom.2021.11.008

Türker, L. (2020). Some novel tricyclic caged-nitramines - A DFT study. Earthline Journal of Chemical Sciences, 5(1), 35-48. https://doi.org/10.34198/ejcs.5121.3548

Türker, L. (2009). Contemplation on spark sensitivity of certain nitramine type explosives. Journal of Hazardous Materials, 169(1-3), 454-459. https://doi.org/10.1016/j.jhazmat.2009.03.117

Türker, L. (2019). Nitramine derivatives of NTO - A DFT study. Earthline Journal of Chemical Sciences, 1(1), 45-63. https://doi.org/10.34198/ejcs.1119.4563

Meyer, R., Köhler, J., & Homburg, A. (2002). Explosives. Weinheim: Wiley-VCH.

Türker, L. (2017). Effect of an alpha-particle on Tetryl - A DFT study. Int. J. of Chemical Modeling, 9(1), 27-36.

Türker, L. (2015). Modeling of effect of primary cosmic rays on Tetryl-A DFT study. Int.J. of Chemical Modeling, 7(2), 133-143.

Türker, L. (2023). Neutral and charged nitrophenyl-N-methylnitramines - A DFT treatment. Earthline Journal of Chemical Sciences, 10(2), 195-211. https://doi.org/10.34198/ejcs.10223.195211

Palopali, S.F., Geib, S.J., Rheingold, A.L., Brill, T.B. (1988). Synthesis and modes of coordination of energetic nitramine ligands in copper(II), nickel(II), and palladium(II) complexes. Inorg. Chem., 27, 2963-2971. https://doi.org/10.1021/ic00290a015

Liu, J., Wei, J., Yang, Q., Song, J., Ga-zi, H., Feng-sheng, L. (2014). Study of nano-nitramine explosives: preparation, sensitivity and application. Defence Technology, 10(2), 184-189. https://doi.org/10.1016/j.dt.2014.04.002

Ravnum, S., Rundén-Pran, E., Fjellsbø, L.M., Dusinska, M. (2014). Human health risk assessment of nitrosamines and nitramines for potential application in CO2 capture. Regul Toxicol Pharmacol, 69(2), 250-5. https://doi.org/10.1016/j.yrtph.2014.04.002

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326

Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.

Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.

Published
2025-03-20
How to Cite
Türker, L. (2025). Some dinitramines from tetraaminoethylene and their interactions with magnesium – DFT study. Earthline Journal of Chemical Sciences, 12(2), 193-205. https://doi.org/10.34198/ejcs.12225.193205
Section
Articles