Effect of Mg+2 or Zn+2 ion on melatonin – DFT treatment
Abstract
Effects of dications of magnesium and zinc atom(s) on melatonin, a nocturnal hormone, have been investigated within the constraints of density functional theory at the level of B3LYP/ 6-31++G(d,p). The results revealed that the composites considered (like melatonin and its dication) are exothermic and favorable in terms of Hº and Gº values. Also they are electronically stable. Various structural, quantum chemical and spectral (IR and UV-VIS) data are collected and discussed. In each case, interaction with melatonin, the cations possessed less positive charge than the initial charge of +2 that means some electron population has been transferred from melatonin to the cation. However, in the case of zinc dication composite, some bond density exists between the organic and inorganic components.
Downloads
References
Greenspan, F. S., & Forsham, P. H. (1983). Basic and clinical endocrinology (p. 33). Lange Medical Publications.
Cutolo, M., Straub, R., & Buttgereit, F. (2008). Circadian rhythms of nocturnal hormones in rheumatoid arthritis: Translation from bench to bedside. Annals of the Rheumatic Diseases, 67, 905–908. https://doi.org/10.1136/ard.2008.088955
Tagaya, H. (2008). Measurement of sleep-related hormones. Biomedical Engineering, 46(2), 169–176.
Bukowska, A. (2011). Anticarcinogenic role of melatonin—Potential mechanisms. Medycyna Pracy, 62, 425–434.
Mazzoccoli, G., Giuliani, F., & Sothern, R. B. (2012). Determination of whole body circadian phase in lung cancer patients: Melatonin vs. cortisol. Cancer Epidemiology, 36, 46–53. https://doi.org/10.1016/j.canep.2011.06.005
White, A. W., Handler, P., & Smith, E. L. (1968). Principles of biochemistry (p. 985). McGraw-Hill.
Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (1988). Harper’s biochemistry. Lange Medical Publications.
Pike, C. J., Burdick, D., Walencewitz, A. J., Glabe, C. G., & Cotman, C. W. (1993). Neurodegeneration induced by β-amyloid peptides in vitro: The role of peptide assembly state. Journal of Neuroscience, 13, 1676–1687. https://doi.org/10.1523/JNEUROSCI.13-04-01676.1993
Foley, H. M., & Steel, A. E. (2019). Adverse events associated with oral administration of melatonin: A critical systematic review of clinical evidence. Complementary Therapies in Medicine, 42, 65–81. https://doi.org/10.1016/j.ctim.2018.11.003
Xu, Z., Wu, Y., Zhang, Y., Zhang, H., & Shi, L. (2019). Melatonin activates BKCa channels in cerebral artery myocytes via both direct and MT receptor/PKC-mediated pathway. European Journal of Pharmacology, 842, 177–188. https://doi.org/10.1016/j.ejphar.2018.10.032
Luo, C., Yang, Q., Liu, Y., Zhou, S., Jiang, J., Reiter, R. J., Bhattacharya, P., Cui, Y., Yang, H., Ma, H., Yao, J., Lawler, S. E., Zhang, X., Fu, J., Rozental, R., Aly, H., Johnson, M. D., Chiocca, E. A., & Wang, X. (2019). The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radical Biology and Medicine, 130, 215–233. https://doi.org/10.1016/j.freeradbiomed.2018.10.402
Rafat, A., Roushandeh, A. M., Alizadeh, A., Hashemi-Firouzi, N., & Golipoor, Z. (2019). Comparison of the melatonin preconditioning efficacy between bone marrow and adipose-derived mesenchymal stem cells. Cell Journal, 20(4), 450–458.
Mukherjee, S. (2019). Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide: Biology and Chemistry, 82, 25–34. https://doi.org/10.1016/j.niox.2018.11.003
Campos, C. N., Ávila, R. G., de Souza, K. R. D., Azevedo, L. M., & Alves, J. D. (2019). Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agricultural Water Management, 211, 37–47. https://doi.org/10.1016/j.agwat.2018.09.025
Abecia, J. A., Forcada, F., Vázquez, M. I., Blanco, T. M., Pérez-Ce, J. A., Pérez-Pé, R., & Casao, A. (2019). Role of melatonin on embryo viability in sheep. Reproduction, Fertility and Development, 31(1), 82–92. https://doi.org/10.1071/RD18308
Hosseinzadeh, A., Javad-Moosavi, S. A., Reiter, R. J., Yarahmadi, R., Ghaznavi, H., & Mehrzadi, S. (2018). Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opinion on Therapeutic Targets, 22(12), 1049–1061. https://doi.org/10.1080/14728222.2018.1541318
Kuznetsova, T. Y., Solovyova, N. V., Solovyov, V. V., & Kostenko, V. O. (2017). Antioxidant activity of melatonin and glutathione interacting with hydroxyl and superoxide anion radicals. Ukrainian Biochemical Journal, 89(6), 22–30. https://doi.org/10.15407/ubj89.06.022
Pshenichnyuk, S. A., Modelli, A., Jones, D., Lazneva, E. F., & Komolov, A. S. (2017). Low-energy electron interaction with melatonin and related compounds. Journal of Physical Chemistry B, 121(16), 3965–3974. https://doi.org/10.1021/acs.jpcb.7b01408
Kubota, M., & Kobayashi, T. (2003). Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 128(2–3), 165–178. https://doi.org/10.1016/S0368-2048(02)00279-7
Vasilescu, D., & Broch, H. (1999). Quantum molecular modeling of melatonin. Journal of Molecular Structure: Theochem, 460(1–3), 191–205. https://doi.org/10.1016/S0166-1280(98)00317-0
Lewis, D. F., Arendt, J., & English, J. (1990). Quantitative structure–activity relationships within a series of melatonin analogs and related indolealkylamines. Journal of Pharmacology and Experimental Therapeutics, 252(1), 370–373. https://doi.org/10.1016/S0022-3565(25)13357-0
Türker, L., & Atalar, T. (2012). Interaction between TNT and melatonin: A DFT treatment. Polycyclic Aromatic Compounds, 32, 615–625. https://doi.org/10.1080/10406638.2012.667499
Türker, L. (2019). Interaction of FOX-7 and melatonin: A DFT treatment. Earthline Journal of Chemical Sciences, 1(1), 19–35. https://doi.org/10.34198/ejcs.1119.1935
Kamfar, W. W., Khraiwesh, H. M., Ibrahim, M. O., Qadhi, A. H., Azhar, W. F., Ghafouri, K. J., Alhussain, M. H., Aldairi, A. F., AlShahrani, A. M., Alghannam, A. F., Abdulal, R. H., Al-Slaihat, A. H., Qutob, M. S., Elrggal, M. E., Ghaith, M. M., & Azzeh, F. S. (2024). Comprehensive review of melatonin as a promising nutritional and nutraceutical supplement. Heliyon, 10(2), e24266. https://doi.org/10.1016/j.heliyon.2024.e24266
Arendt, J., & Skene, D. J. (2005). Melatonin as a chronobiotic. Sleep Medicine Reviews, 9(1), 25–39. https://doi.org/10.1016/j.smrv.2004.05.002
Pévet, P. (2002). Melatonin. Dialogues in Clinical Neuroscience, 4(1), 57–72. https://doi.org/10.31887/DCNS.2002.4.1/ppevet
Stewart, J. J. P. (1989a). Optimization of parameters for semi-empirical methods I. Journal of Computational Chemistry, 10, 209–220. https://doi.org/10.1002/jcc.540100208
Stewart, J. J. P. (1989b). Optimization of parameters for semi-empirical methods II. Journal of Computational Chemistry, 10, 221–264. https://doi.org/10.1002/jcc.540100209
Leach, A. R. (1997). Molecular modeling. Longman.
Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules. Oxford University Press.
Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 58, 1200–1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Physical Review B, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785
Wavefunction, Inc. (2006). SPARTAN 06. Irvine, CA, USA.
Glanze, D. W., Anderson, K. N., & Anderson, L. E. (1987). Medical encyclopedia. Signet/Mosby.
Turro, N. J. (1991). Modern molecular photochemistry. University Science Books.
Anslyn, E. V., & Dougherty, D. A. (2006). Modern physical organic chemistry. University Science Books.

This work is licensed under a Creative Commons Attribution 4.0 International License.
