Push-pull interactions in cis/trans diaminodinitro ethylenes – DFT treatment
Abstract
The cis and trans isomers of 1,2-diamino-1,2-dinitroethylene are even alternant systems and partly exist in structure of FOX-7 explosive. Presently, they have been investigated thoroughly within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). The collected data have revealed that the optimized structures of them have exothermic heats of formation and favorable Gibbs free energy of formation values. They are thermally favored and electronically stable at the standard states. Various structural and quantum chemical data have been collected and discussed, including IR and UV-VIS spectra.
Downloads
References
Zhang, Y., Sun, Q., Xu, K., Song, J., & Zhao, F. (2016). Review on the reactivity of 1,1-diamino-2,2-dinitroethylene (FOX-7). Propellants Explos. Pyrotech., 41, 35–52. https://doi.org/10.1002/prep.201500065
Baum, K., Nguyen, N.V., Gilardi, R., Flippen-Anderson, J.L., & George, C. (1992). Nitration of 1,1-diamino-2,2-dinitroethylenes. Journal of Organic Chemistry, 57, 3026-3030. https://doi.org/10.1021/jo00037a015
Kleinpeter, E. (2006). Push-pull alkenes: Structure and π-electron distribution. Journal of the Serbian Chemical Society, 71(1), 1-17. https://doi.org/10.2298/JSC0601001K
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
Dykstra, C.E., Frenking, G., Kim, K., & Scuseria, G. (2015). Theory and applications of computational chemistry: The first forty years. New York: Elsevier.
Yanai, H., Suzuki, T., Kleemiss, F., Fukaya, H., Malaspina, L.A., Grabowsky, S., & Matsumoto, T. (2019). Chemical bonding in polarized push-pull ethylenes. Angewandte Chemie International Edition, 58(26), 8839-8844. https://doi.org/10.1002/anie.201904176
Shainyan, B.A., Fettke, A., & Kleinpeter, E. (2008). Push-pull vs captodative aromaticity. J. Phys. Chem. A, 112(43), 10895-10903. https://doi.org/10.1021/jp804999m
Pappalardo, R.R., Marcos, E.S., Ruiz-Lóapez, M.F., & Rinaldi, D. (1991). Theoretical study of simple push-pull ethylenes in solution. Journal of Physical Organic Chemistry, 4(3), 41-148. https://doi.org/10.1002/poc.610040304
Politzer, P., Concha, M.C., Grice, M.E., Murray J.S., Lane, P., & Habibollazadeh, D. (1998). Computational investigation of the structures and relative stabilities of amino/nitro derivatives of ethylene. Journal of Molecular Structure (Theochem), 452, 75- 83. https://doi.org/10.1016/S0166-1280(98)00136-5
Kleinpeter, E., Klod, S., & Rudorf, Wolf-Dieter. (2004). Electronic state of push-pull alkenes: An experimental dynamic NMR and theoretical ab ınitio MO study. J. Org. Chem., 69(13), 4317-4329. https://doi.org/10.1021/jo0496345
Ababneh-Khasawneh, M., Fortier-McGill, B.E., Occhionorelli, M.E., & Bain, A.D. (2011). Solvent effects on chemical exchange in a push-pull ethylene as studied by NMR and electronic structure calculations. J. Phys. Chem. A, 115(26), 7531-7537. https://doi.org/10.1021/jp201885q
Türker, L., Bayar, Ç.Ç., & Balaban, A.T. (2010). A DFT study on push-pull (aminonitro) fulminenes and hexahelicenes. Polycyclic Aromatic Compounds, 30(2), 91-111. https://doi.org/10.1080/10406631003756005
Türker, L., & Bayar, Ç.Ç. (2010). A DFT study on disubstituted R-hexahelicenes having donor/acceptor groups. Procedia Computer Science, 1(1), 1155-1164. https://doi.org/10.1016/j.procs.2010.04.129
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys.Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.

This work is licensed under a Creative Commons Attribution 4.0 International License.
