Some Properties for Strong Differential Subordination of Analytic Functions Associated with Wanas Operator
Abstract
In this paper, by making use of Wanas operator, we derive some properties related to the strong differential subordinations of analytic functions defined in the open unit disk and closed unit disk of the complex plane.
References
F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 27 (2004), 1429-1436. https://doi.org/10.1155/S0161171204108090
N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40(3) (2003), 399-410.|https://doi.org/10.4134/BKMS.2003.40.3.399
N. E. Cho, O. S. Kwon and H. M. Srivastava, Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu-Srivastava operator, Integral Transforms Spec. Funct. 21(8) (2010), 589-601. https://doi.org/10.1080/10652460903494751
N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37(1-2) (2003), 39-49. https://doi.org/10.1016/S0895-7177(03)80004-3
M. P. Jeyaraman and T. K. Suresh, Strong differential subordination and superordination of analytic functions, J. Math. Anal. Appl. 385(2) (2012), 854-864. https://doi.org/10.1016/j.jmaa.2011.07.016
A. A. Lupas, A note on strong differential superordinations using a generalized Salagean operator and Ruscheweyh operator, Stud. Univ. Babes-Bolyai Math. 57(2) (2012), 135-165.
S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32(2) (1985), 185-195. https://doi.org/10.1307/mmj/1029003185
S. S. Miller and P. T. Mocanu, Differential subordinations: theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000. https://doi.org/10.1201/9781482289817
G. I. Oros and Gh. Oros, Strong differential subordination, Turk. J. Math. 33 (2009), 249-257.
G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math., Vol. 1013, Springer Verlag, Berlin, 1983, pp. 362-372. https://doi.org/10.1007/BFb0066543
S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum 7(36) (2012), 1751-1760.
A. K. Wanas, New differential operator for holomorphic functions, Earthline J. Math. Sci. 2(2) (2019), 527-537. https://doi.org/10.34198/ejms.2219.527537
A. K. Wanas and B. A. Frasin, Strong differential sandwich results for Frasin operator, Earthline J. Math. Sci. 3(1) (2020), 95-104. https://doi.org/10.34198/ejms.3120.95104
A. K. Wanas and A. A. Lupas, On a new strong differential subordinations and superordinations of analytic functions involving the generalized differential operator, Int. J. Pure Appl. Math. 116(3) (2017), 571-579.
This work is licensed under a Creative Commons Attribution 4.0 International License.