New Aspects of Extended General Equilibrium Inclusions
Abstract
Some new classes of extended general equilibrium inclusions are introduced and investigated. We have established the equivalence between the general equilibrium inclusions and the fixed point problems, which is used to discuss the unique existence of the solution. Using various techniques such as resolvent methods, dynamical systems coupled with finite difference approach, we suggest and analyze a number of new multi step methods for solving equilibrium inclusions. Convergence analysis of these methods is investigated under suitable conditions. Sensitivity analysis is also investigated. Various special cases are discussed as applications of the main results. Several open problems are suggested for future research.
Downloads
References
Anderson, G. D., Vamanamurthy, M. K., & Vuorinen, M. (2007). Generalized convexity and inequalities. Journal of Mathematical Analysis and Applications, 335(2), 1294–1308. https://doi.org/10.1016/j.jmaa.2007.02.016
Ashish, K., Rani, M., & Chugh, R. (2014). Julia sets and Mandelbrot sets in Noor orbit. Applied Mathematics and Computation, 228(1), 615–631. https://doi.org/10.1016/j.amc.2013.11.077
Ashish, K., Cao, J., & Noor, M. A. (2023). Stabilization of fixed points in chaotic maps using Noor orbit with applications in cardiac arrhythmia. Journal of Applied Analysis and Computation, 13(5), 2452–2470. https://doi.org/10.11948/20220350
Al-Azemi, F., & Calin, O. (2015). Asian options with harmonic average. Applied Mathematics & Information Sciences, 9, 1–9.
Bloach, M. I., Noor, M. A., & Noor, K. I. (2021). Iterative schemes for triequilibrium-like problems. International Journal of Analysis and Applications, 19(5), 743–759. https://doi.org/10.28924/2291-8639-19-2021-743
Bloach, M. I., Noor, M. A., & Noor, K. I. (2022). Well-posedness of triequilibrium-like problems. International Journal of Analysis and Applications, 20(3), 1–10. https://doi.org/10.28924/2291-8639-20-2022-3
Blum, E., & Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems. Mathematics Students, 63, 123–145.
Cho, S. Y., Shahid, A. A., Nazeer, W., & Kang, S. M. (2006). Fixed point results for fractal generation in Noor orbit and s-convexity. SpringerPlus, 5, 1843. https://doi.org/10.1186/s40064-016-3530-5
Cottle, R. W., Pang, J.-S., & Stone, R. E. (2009). The linear complementarity problem. SIAM. https://doi.org/10.1137/1.9780898719000
Cristescu, G., & Lupsa, L. (2002). Non-connected convexities and applications. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-0003-2
Cristescu, G., & Mihail, G. (2009). Shape properties of Noor’s g-convex sets. Proceedings of the Twelfth Symposium of Mathematical Applications, Timisoara, Romania, 1–13.
Dafermos, S. (1988). Sensitivity analysis in variational inequalities. Mathematics of Operations Research, 13, 421–434. https://doi.org/10.1287/moor.13.3.421
Dupuis, P., & Nagurney, A. (1993). Dynamical systems and variational inequalities. Annals of Operations Research, 44, 7–42. https://doi.org/10.1007/BF02073589
Glowinski, R., Lions, J. L., & Trémolières, R. (1981). Numerical analysis of variational inequalities. North-Holland.
Glowinski, R., & Le Tallec, P. (1989). Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM.
Jabeen, S., Macías-Díaz, J. E., Noor, M. A., Khan, M. B., & Noor, K. I. (2022). Design and convergence analysis of implicit inertial methods for quasi-variational inequalities via the Wiener–Hopf equations. Applied Numerical Mathematics, 182, 76–86. https://doi.org/10.1016/j.apnum.2022.08.001
Jana, S., & Noor, M. A. (2025). Mixed quasi hemiequilibrium problems on Hadamard manifolds. International Journal of Mathematical, Statistical and Operational Research, 5(2), 269–285. https://doi.org/10.47509/IJMSOR.2025.v05i02.06
Kinderlehrer, D., & Stampacchia, G. (2000). An introduction to variational inequalities and their applications. SIAM. https://doi.org/10.1137/1.9780898719451
Kwuni, Y. C., Shahid, A. A., Nazeer, W., Butt, S. I., Abbas, M., & Kang, S. M. (2019). Tricorns and multicorns in Noor orbit with s-convexity. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2928796
Lions, J., & Stampacchia, G. (1967). Variational inequalities. Communications on Pure and Applied Mathematics, 20, 493–519. https://doi.org/10.1002/cpa.3160200302
Mahato, N. K., Noor, M. A., & Sahu, N. K. (2019). Existence results for trifunction equilibrium problems and fixed point problems. Analysis and Mathematical Physics, 9, 323–347. https://doi.org/10.1007/s13324-017-0199-z
Nagurney, A., & Zhang, D. (1996). Projected dynamical systems and variational inequalities with applications. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-2301-7
Natarajan, S. K., & Negi, D. (2024). Green innovations utilizing fractal and power for solar panel optimization. In R. Sharma, G. Rana, & S. Agarwal (Eds.), Green Innovations for Industrial Development and Business Sustainability (pp. 146–152). CRC Press. https://doi.org/10.1201/9781003458944-10
Niculescu, C. P., & Persson, L. E. (2018). Convex functions and their applications. Springer. https://doi.org/10.1007/978-3-319-78337-6
Noor, M. A. (1975). On variational inequalities (PhD thesis). Brunel University.
Noor, M. A. (1988). General variational inequalities. Applied Mathematics Letters, 1(2), 119–121. https://doi.org/10.1016/0893-9659(88)90054-7
Noor, M. A. (1988). Quasi variational inequalities. Applied Mathematics Letters, 1(4), 367–370. https://doi.org/10.1016/0893-9659(88)90152-8
Noor, M. A. (1997). Sensitivity analysis for quasi variational inequalities. Journal of Optimization Theory and Applications, 95(2), 399–407. https://doi.org/10.1023/A:1022691322968
Noor, M. A. (2000). New approximation schemes for general variational inequalities. Journal of Mathematical Analysis and Applications, 251(1), 217–229. https://doi.org/10.1006/jmaa.2000.7042
Noor, M. A. (2001). Three-step iterative algorithms for multivalued quasi variational inclusions. Journal of Mathematical Analysis and Applications, 255(2), 589–604. https://doi.org/10.1006/jmaa.2000.7298
Noor, M. A. (2004). Some developments in general variational inequalities. Applied Mathematics and Computation, 152(1), 199–277.
Noor, M. A. (2004). Auxiliary principle technique for equilibrium problems. Journal of Optimization Theory and Applications, 122, 371–386. https://doi.org/10.1023/B:JOTA.0000042526.24671.b2
Noor, M. A. (2003). Multivalued general equilibrium problems. Journal of Mathematical Analysis and Applications, 283, 140–149. https://doi.org/10.1016/S0022-247X(03)00251-8
Noor, M. A. (2004). On a class of nonconvex equilibrium problems. Applied Mathematics and Computation, 157, 653–666. https://doi.org/10.1016/j.amc.2003.08.061
Noor, M. A., & Noor, K. I. (2004). On equilibrium problems. Applied Mathematics E-Notes, 4, 125–132.
Noor, M. A. (2006). Fundamentals of equilibrium problems. Mathematical Inequalities and Applications, 6(3), 529–566. https://doi.org/10.7153/mia-09-51
Noor, M. A. (2008). Differentiable nonconvex functions and general variational inequalities. Applied Mathematics and Computation, 199(2), 623–630. https://doi.org/10.1016/j.amc.2007.10.023
Noor, M. A. (2009). Extended general variational inequalities. Applied Mathematics Letters, 22(2), 182–185. https://doi.org/10.1016/j.aml.2008.03.007
Noor, M. A., & Al-Said, E. (1999). Change of variable method for generalized complementarity problems. Journal of Optimization Theory and Applications, 100, 389–395. https://doi.org/10.1023/A:1021790404792
Noor, M. A., & Noor, K. I. (1999). Sensitivity analysis for quasi variational inclusions. Journal of Mathematical Analysis and Applications, 236, 290–299. https://doi.org/10.1006/jmaa.1999.6424
Noor, M. A., & Noor, K. I. (2022). Dynamical system technique for solving quasi variational inequalities. U.P.B. Scientific Bulletin, Series A, 84(4), 55–66.
Noor, M. A., & Noor, K. I. (2022). New inertial approximation schemes for general quasi variational inclusions. Filomat, 36(18), 6071–6084. https://doi.org/10.2298/FIL2218071N
Noor, M. A., & Noor, K. I. (2023). General bivariational inclusions and iterative methods. International Journal of Nonlinear Analysis and Applications, 14(1), 309–324.
Noor, M. A., & Noor, K. I. (2024). Some new iterative schemes for solving general quasi variational inequalities. Le Matematiche, 79(2), 327–370.
Noor, M. A., & Noor, K. I. (2024). Some novel aspects and applications of Noor iterations and Noor orbits. Journal of Advanced Mathematical Studies, 17(3), 276–284.
Noor, M. A., & Noor, K. I. (2025). General harmonic-like variational inequalities. U.P.B. Scientific Bulletin, Series A, 87(3), 49–58.
Noor, M. A., & Noor, K. I. (2025). Some new classes of general harmonic-like nonlinear equations. General Mathematics, 33. (In press)
Noor, M. A., Noor, K. I., & Rassias, M. T. (2020). New trends in general variational inequalities. Acta Applicandae Mathematicae, 170(1), 981–1046. https://doi.org/10.1007/s10440-020-00366-2
Noor, M. A., Noor, K. I., & Rassias, M. T. (2025). General variational inequalities and optimization. In P. M. Pardalos & T. M. Rassias (Eds.), Geometry and Non-Convex Optimization (SOIA, Vol. 223, pp. 361–611). Springer. https://doi.org/10.1007/978-3-031-8705
Noor, M. A., Noor, K. I., & Rassias, T. M. (1993). Some aspects of variational inequalities. Journal of Computational and Applied Mathematics, 47, 285–312. https://doi.org/10.1016/0377-0427(93)90058-J
Noor, M. A., Noor, K. I., & Rassias, T. M. (2010). Parametric general quasi variational inequalities. Mathematical Communications, 15(1), 205–212.
Noor, M. A., & Oettli, W. (1994). On general nonlinear complementarity problems and quasi equilibria. Le Matematiche, 49, 313–331.
Paimsang, S., Yambangwai, D., & Thainwan, T. (2024). A novel Noor iterative method of operators with property (E) for convex programming with applications in signal recovery and polynomiography. Mathematical Methods in the Applied Sciences, 47(12), 9571–9588. https://doi.org/10.1002/mma.10083
Rattanaseeha, K., Imnang, S., Inkrong, P., & Thianwan, T. (2023). Novel Noor iterative methods for mixed-type asymptotically nonexpansive mappings in hyperbolic spaces. International Journal of Innovative Computing, Information and Control, 19(6), 1717–1734.
Stampacchia, G. (1964). Formes bilinéaires coercitives sur les ensembles convexes. Comptes Rendus de l'Académie des Sciences de Paris, 258, 4413–4416.
Suantai, S., Noor, M. A., Kankam, K., & Cholamjiak, P. (2021). Novel forward–backward algorithms for optimization and applications to compressive sensing and image inpainting. Advances in Difference Equations, 2021, Article 265. https://doi.org/10.1186/s13662-021-03422-9
Tomar, A., Antal, S., Sajid, M., & Prajapati, D. J. (2025). Role of s-convexity in the generation of fractals as Julia and Mandelbrot sets via three-step fixed point iteration. AIMS Mathematics, 10(11), 26077–26105. https://doi.org/10.3934/math.20251148
Trinh, T. Q., & Vuong, P. T. (2024). The projection algorithm for inverse quasi-variational inequalities with applications to traffic assignment and network equilibrium control. Optimization, 2024, 1–25. https://doi.org/10.1080/02331934.2024.2329788
Xia, Y. S., & Wang, J. (2000). A recurrent neural network for solving linear projection equations. Neural Networks, 13, 337–350. https://doi.org/10.1016/S0893-6080(00)00019-8
Xia, Y. S., & Wang, J. (2000). On the stability of globally projected dynamical systems. Journal of Optimization Theory and Applications, 106, 129–150. https://doi.org/10.1023/A:1004611224835
Yadav, A., & Jha, K. (2016). Parrondo's paradox in the Noor logistic map. International Journal of Advanced Research in Engineering and Technology, 7(5), 1–6.
Zhang, Y., & Yu, G. (2022). Error bounds for inverse mixed quasi-variational inequality via generalized residual gap functions. Asia-Pacific Journal of Operational Research, 39(2), 2150017. https://doi.org/10.1142/S0217595921500172

This work is licensed under a Creative Commons Attribution 4.0 International License.
.jpg)

