Some Computational Methods for Solving Extended General Bivariational Inclusions
Abstract
Some new classes of extended general bivariational inclusions are introduced and analyzed. It is established that the extended general bivariational inclusions are equivalent to the fixed point problems. This equivalence is used to discuss the existence of a solution of the extended general bivariational inequalities. Some new iterative methods for solving bivariational inclusions and related optimization problems are proposed. Convergence analysis of these methods is investigated under suitable conditions. Some special cases are also discussed of the main results as applications of the main results.
References
F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim. 14 (2003), 773-782. https://doi.org/10.1137/s1052623403427859
W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed., Academic Press, New York, 1992.
K. Ashish, M. Rani and R. Chugh, Julia sets and Mandelbrot sets in Noor orbit, Appl. Math. Comput. 228(1) (2014), 615-631. https://doi.org/10.1016/j.amc.2013.11.077
Ashish, J. Cao and M. Aslam Noor, Stabilization of fixed points in chaotic maps using Noor orbits with applications in cardiac arrhythmia, J. Appl. Anal. Computation 13 (2023). https://doi.org/10.11948/20220350
R. W. Cottle, Nonlinear programs with positively bounded Jacobians, J. Soc. Indust. Appl. Math. 1 (1966), 147-158. https://doi.org/10.1137/0114012
R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, SIAM Publ. Philadelphia, USA, 2009.
P. Daniele, F. Giannessi and A. Maugeri, Equilibrium Problems and Variational Models, Kluwer Acadamic, London, 2003.
P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Annals Oper. Research 44 (1993), 7-42. https://doi.org/10.1007/bf02073589
R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, Amsterdam, 1981.
R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, Pennsylvania, 1989. https://doi.org/10.1137/1.9781611970838
S. Haubruge, V. H. Nguyen and J. J. Strodiot, Convergence analysis and applications of the Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 97 (1998), 645-673. https://doi.org/10.1023/a:1022646327085
S. Jabeen, B. B. Mohsin, M. A. Noor and K. I. Noor. Inertial projection methods for solving general quasi-variational inequalities, AIMS Math. 6(2) (2021), 1075-1086. https://doi.org/10.3934/math.2021064
E. Lemke, Bimatrix equilibrium points and mathematical programming, Management Sci. 11 (1965), 681-689. https://doi.org/10.1287/mnsc.11.7.681
S. Karamardian, Generalized complementarity problems, J. Opt. Theory Appl. 8 (1971), 161-168.
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, SIAM, Philadelphia, 2000.
G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomika Mat. Metody 12 (1976), 747-756.
O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett. 3 (2009), 101-108. https://doi.org/10.1007/s11590-008-0094-5
A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Kluwer Academic Publishers, Boston, Dordrecht, London 1996.
T, V. Nghi and N. N. Tam, General variational inequalities : existence of solutions, Tikhonov-Type regularization, and well-posedness, Acta Math. Vietnamica 47 (2022). https://doi.org/10.1007/s40306-021-00435-0
M. A. Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, UK, 1975.
M. A. Noor, General variational inequalities, Appl. Math. Letters 1 (1988), 119-121.
M. A. Noor, Fixed point approach for complementarity problems, J. Math. Anal. Appl. 133 (1988), 437-448.
M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-230.
M. A. Noor, Resolvent dynamical systems for mixed variational inequalities, Korean J. Comput. Appl. Math. 9 (2002), 15-26. https://doi.org/10.1007/bf03012337
M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199-277.
M. A. Noor, Generalized set-valued variational inclusions and resolvent equations, J. Math. Anal. Appl. 228 (1998), 206-220. https://doi.org/10.1006/jmaa.1998.6127
M. A. Noor, Three-step iterative algorithms for multivalued quasi variational inclusions, J. Math. Anal. Appl. 255 (2001), 589-604. https://doi.org/10.1006/jmaa.2000.7298
M. A. Noor, Implicit dynamical systems and quasi variational inequalities, Appl. Math. Comput. 134 (2003), 69-81. https://doi.org/10.1016/s0096-3003(01)00269-7
M. A. Noor, Extended general variational inequalities, Appl. Math. Letters 22(2) (2009), 182-186.
M. A. Noor and K. I. Noor, From representation theorems to variational inequalities, in : Computational Mathematics and Variational Analysis (Eds : N. J. Daras, T. M. Rassias), Springer Optimization and Its Applications 159 (2020), 261-277. https://doi.org/10.1007/978-3-030-44625-315
M. A. Noor and K. I. Noor, General bivariational inequalities and iterative methods, Inter. J. Nonlin. Anal. Appl., 2023.
M. A. Noor and K. I. Noor, Absolute value variational inclusions, Earthline J. Math. Sci. 8(1) (2022), 121-153. https://doi.org/10.34198/ejms.8122.121153
M. A. Noor and K. I. Noor, Dynamical system technique for solving quasi variational inequalities, U.P.B. Sci. Bull., Series A 84(4) (2022), 55-66.
M. A. Noor and K. I. Noor, New inertial approximation schemes for general quasi variational inclusions, Filomat 36(18) (2022), 6071-6084. https://doi.org/10.2298/fil2218071r
M. A. Noor and K. I. Noor, Higher order generalized variational inequalities and nonconvex optimization, U.P.B. Sci. Bull., Series A 85(2) (2023), 77-88.
M. Aslam Noor and K. Inayat Noor, Iterative schemes for solving higher order hemivariational inequalities, Appl. Math. E-Notes 2024(2024).
M. A. Noor, K. I. Noor and B. B. Mohsen, Some new classes of general quasi variational inequalities, AIMS Math. 6(6) (2021), 6406-6421. https://doi.org/10.3934/math.2021376
M. A. Noor, K. I. Noor and A. Bnouhachem, Some new iterative methods for variational inequalities, Canad. J. Appl. Math. 3(1) (2021), 1-17.
M. A. Noor, K. I. Noor, and M. T. Rassias, New trends in general variational inequalities, Acta Appl. Math. 170(1) (2021), 981-1046. https://doi.org/10.1007/s10440-020-00366-2
M. A. Noor, K. I. Noor and Th. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993), 285-312. https://doi.org/10.1016/0377-0427(93)90058-j
M. A. Noor, K. I. Noor and S. Batool, On generalized absolute value equations, U.P.B. Sci. Bull. Series A 80(4) (2018), 63-70.
M. A. Noor, K. I. Noor and R. Latif, Dynamical systems and variational inequalities, J. Inequal. Special Funct. 8(5) (2017), 22-29.
M. A. Noor, J. Iqbal, K.I. Noor and E. Al-Said, On an iterative method for solving absolute value equations, Optim. Lett. 6 (2012), 1027-1033. https://doi.org/10.1007/s11590-011-0332-0
M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-Shemas, On difference of two monotone operators, Optim. Letters 3 (2009), 329-335. https://doi.org/10.1007/s11590-008-0112-7
M. Patriksson, Nonlinear Programming and Variational Inequalities : A Unified Approach, Kluwer Acadamic Publishers, Drodrecht, 1998.
B. T. Polyak, Some methods of speeding up the convergence of iterative methods, USSR Comput. Math. Math. Phys. 4(5) (1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
P. Shi, Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc. 111 (1991), 339-346. https://doi.org/10.1090/s0002-9939-1991-1037224-3
Y. Shehu, A. Gibali and S. Sagratella, Inertial projection-type method for solvi quasi variational inequalities in real Hilbert space, J. Optim. Theory Appl. 184 (2020), 877-894. https://doi.org/10.1007/s10957-019-01616-6
G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38(2) (2000), 431-446. https://doi.org/10.1137/s0363012998338806
This work is licensed under a Creative Commons Attribution 4.0 International License.