Some Novel Aspects of Quasi Variational Inequalities

  • Muhammad Aslam Noor Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
  • Khalida Inayat Noor Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
Keywords: variational inequalities, projection method, Wiener-Hopf equations, dynamical system, convergence, numerical results

Abstract

Quasi variational inequalities can be viewed as novel generalizations of the variational inequalities and variational principles, the origin of which can be traced back to Euler, Lagrange, Newton and Bernoulli's brothers. It is well known that quasi-variational inequalities are equivalent to the implicit fixed point problems. We consider this alternative equivalent fixed point formulation to suggest some new iterative methods for solving quasi-variational inequalities and related optimization problems using projection methods, Wiener-Hopf equations, dynamical systems, merit function and nonexpansive mappings. Convergence analysis of these methods is investigated under suitable conditions. Our results present a significant improvement of previously known methods for solving quasi variational inequalities and related optimization problems. Since the quasi variational inequalities include variational inequalities and complementarity problems as special cases. Results obtained in this paper continue to hold for these problems. Some special cases are discussed as applications of the main results. The implementation of these algorithms and comparison with other methods need further efforts.

References

F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim. 14 (2003), 773-782. https://doi.org/10.1137/S1052623403427859

W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed., Academic Press, New York, 1992

A. S. Antipin, M. Jacimovic and N. Mijajlovic, Extra gradient method for solving quasi variational inequalities, Optimization 67 (2018), 103-112. https://doi.org/10.1080/02331934.2017.1384477

K. Ashish, M. Rani and R. Chugh, Julia sets and Mandelbrot sets in Noor orbit, Appl. Math. Comput. 228(1) (2014), 615-631. https://doi.org/10.1016/j.amc.2013.11.077

A. Barbagallo and P. Mauro, Inverse variational inequality approach and applications Numer. Funct. Anal. Optim. 35 (2014), 851-867. https://doi.org/10.1080/01630563.2014.895751

A. Bensoussan and J. L. Lions, Applications des inéquations variationnelles en contrôle stochastique, Paris: Bordas(Dunod), 1978.

A. Bnouhachem, M. A. Noor, M. Khalfaqui and S. Zhaohan, A self-adaptive projection methods for a class of variant variational inequalities, J. Math. Inequal. 5(1) (2011), 117-129. https://doi.org/10.7153/jmi-05-11

D. Chan and J. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res. 7 (1982), 211-222. https://doi.org/10.1287/moor.7.2.211

J-M. Chen, L-J. Zhang and Z. He, Strong convergence of extended general variational inequalities and nonexpansive mappings, East Asian Math. J. 26(1) (2010), 59-67.

R. W. Cottle, Nonlinear programs with positively bounded Jacobians, J. Soc. Indust. Appl. Math. 14 (1966), 147-158. https://doi.org/10.1137/0114012

R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, SIAM Publ., 2009.

G. Cristescu and L. Lupsa, Non Connected Convexities and Applications, Kluwer Academic Publisher, Dordrechet, 2002. https://doi.org/10.1007/978-1-4615-0003-2

S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Research 13 (1986), 421-434. https://doi.org/10.1287/moor.13.3.421

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Annals Oper. Research 44 (1993), 7-42. https://doi.org/10.1007/BF02073589

R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, Amsterdam, 1981.

R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, Pennsylvania, USA, 1989.

S. Haubruge, V. H. Nguyen and J. J. Strodiot, Convergence analysis and applications of the Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 97 (1998), 645-673. https://doi.org/10.1023/A:1022646327085

B. He, X-Z. He and H. X. Liub, Solving a class of constrained 'black-box' inverse variational inequalities, European Journal of Operational Research 204(3) (2010), 391-401. https://doi.org/10.1016/j.ejor.2009.07.006

S. Ishikawa, Fixed points by a new iteration, Proc. Amer. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5

S. Jabeen, B. B. Mohsin, M. A. Noor and K. I. Noor, Inertial projection methods for solving general quasi-variational inequalities, AIMS Math. 6(2) (2021), 1075-1086. https://doi.org/10.3934/math.2021064

S. Jabeen, M. A. Noor and K. I. Noor, Inertial methods for solving system of quasi variational inequalities, J. Advan. Math. Stud. 15(1) (2022), 01-10. https://doi.org/10.22271/j.ento.2022.v10.i1a.8914

X. Ju, C. Li, X. He and G. Feng, An inertial projection neural network for solving inverse variational inequalities, Neurocomput. 406 (2020), 99-105. https://doi.org/10.1016/j.neucom.2020.04.023

S. Karamardian, Generalized complementarity problems, J. Opt. Theory Appl. 8 (1971), 161-168. https://doi.org/10.1007/BF00932464

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, SIAM, Philadelphia, 2000

G. M. Korplevich, The extragradient method for finding saddle points and other problems, Ekonomika Mat. Metody 12 (1976), 747-756.

E. Lemke, Bimatrix equilibrium points, and mathematical programming, Management Sci. 11 (1965), 681-689. https://doi.org/10.1287/mnsc.11.7.681

Q. Liu and J. Cao, A recurrent neural network based on projection operator for extended general variational inequalities, IEEE Transact. Systems, Man, and Cybernetics, Part B (Cybernetics) 40(3) (2010), 928-938. https://doi.org/10.1109/TSMCB.2009.2033565

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3

N. Mijajlovic, J. Milojica and M. A. Noor, Gradient-type projection methods for quasi variational inequalities, Optim. Lett. 13 (2019), 1885-1896. https://doi.org/10.1007/s11590-018-1323-1

K. G. Murty, Linear complementarity: Linear and Nonlinear Programming, Heldermann, Berlin, 1988.

A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Kluwer Academic Publishers, Boston, Dordrecht, London 1996

T. V. Nghi and N. N. Tam, General variational inequalities: existence of solutions, Tikhonov-Type regularization and well-posedness, Acta Math. Vietn., 2021. https://doi.org/10.1007/s40306-021-00435-0

C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2018. https://doi.org/10.1007/978-3-319-78337-6_1

M. A. Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, U. K., 1975.

M. A. Noor, An iterative scheme for class of quasi variational inequalities, J. Math. Anal. Appl. 110 (1985), 463-468. https://doi.org/10.1016/0022-247X(85)90308-7

M. A. Noor, The quasi-complementarity problem, J. Math. Anal. Appl. 130 (1988), 344-353. https://doi.org/10.1016/0022-247X(88)90310-1

M. A. Noor, General variational inequalities, Appl. Math. Letters 1 (1988), 119-121. https://doi.org/10.1016/0893-9659(88)90054-7

M. A. Noor, Quasi variational inequalities, Appl. Math. Letters 1(4) (1988), 367-370. https://doi.org/10.1016/0893-9659(88)90152-8

M. A. Noor, Sensitivity analysis for quasi variational inequalities, J. Optim. Theory Appl. 95(2) (1997), 399-407. https://doi.org/10.1023/A:1022691322968

M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-230. https://doi.org/10.1006/jmaa.2000.7042

M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152(2004), 199-277. https://doi.org/10.1016/S0096-3003(03)00558-7

M. A. Noor, Generalized multivalued quasi variational inequalities and implicit Wiener-Hopf equations, Optimization 45 (1999), 197-222. https://doi.org/10.1080/02331939908844433

M. A. Noor, Implicit dynamical systems and quasi variational inequalities, Appl. Math. Comput. 134 (2003), 69-83. https://doi.org/10.1016/S0096-3003(01)00269-7

M. A. Noor, On merit functions for quasi variational inequalities, J. Math. Inequal. 1 (2007), 259-268. https://doi.org/10.7153/jmi-01-23

M. A. Noor, Extended general variational inequalities, Appl. Math. Letters 22(2) (2009), 186-192. https://doi.org/10.1016/j.aml.2008.03.007

M. A. Noor, Projection iterative methods for extended general variational inequalities, J. Appl. Math. Computing 32 (2010), 83-95. https://doi.org/10.1007/s12190-009-0234-9

M. A. Noor, Some aspects of extended general variational inequalities, Abstract Appl. Anal. 2012(2012):Article ID 303569, 16 pp. https://doi.org/10.1155/2012/303569

M. A. Noor and Z. Y. Huang, Three-step iterative methods for nonexpansive mappings and variational inequalities, Appl. Math. Comput. 187(2) (2007), 680-687.

M. A. Noor and Z. Huang, Quasi variational inequalities and nonexpansive mappings, Inter. J. Appl. Math. Eng. Sciences 1 (2007), 1-10.

M. A. Noor, On an implicit method for nonconvex variational inequalities, J. Optim. Theory Appl. 147 (2010), 411-417. https://doi.org/10.1007/s10957-010-9717-y

M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Le Mathematiche 49 (1994), 313-331.

M. A. Noor, K. I. Noor and A. G. Khan, Some iterative schemes for solving extended general quasi variational inequalities, Appl. Math. Inf. Sci. 7(3) (2013), 917-925. https://doi.org/10.12785/amis/070309

M. A. Noor, K. I. Noor and A. G. Khan, Parallel schemes for solving a system of extended general quasi variational inequalities, Appl. Math. Comput. 245 (2014), 566-574. https://doi.org/10.1016/j.amc.2014.08.043

M. A. Noor, K. I. Noor and B. B. Mohsen, Some new classes of general quasi variational inequalities, AIMS Math. 6(6) (2021), 6406-6421. https://doi.org/10.3934/math.2021376

M. A. Noor, K. I. Noor and A. Bnouhachem, Some new iterative methods for variational inequalities, Canad. J. Appl. Math. 2(2) (2020), 1-17.

M. A. Noor, K. I. Noor, and M. T. Rassias, New trends in general variational inequalities, Acta Appl. Math. 170(1) (2020), 981-1046. https://doi.org/10.1007/s10440-020-00366-2

M. A. Noor, K. I. Noor and Th. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993), 285-312. https://doi.org/10.1016/0377-0427(93)90058-J

M. A. Noor, S. Ullah, K. I. Noor and E. Al-Said, Iterative methods for solving extended general mixed variational inequalities, Comput. Math. Appl. 62(2) (2011), 804-813. https://doi.org/10.1016/j.camwa.2011.06.010

M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-Shemas, On difference of two monotone operators, Optim. Letters 3 (2009), 329-335. https://doi.org/10.1007/s11590-008-0112-7

M. Patriksson, Nonlinear Programming and Variational Inequalities: A Unified Approach, Kluwer Acadamic publishers, Drodrecht, 1998. https://doi.org/10.1007/978-1-4757-2991-7

S.M. Robinson, Normal maps induced by linear transformations, Math. Oper. Res. 17 (1992), 691-714. https://doi.org/10.1287/moor.17.3.691

P. Shi, Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc. 111 (1991), 339-346. https://doi.org/10.1090/S0002-9939-1991-1037224-3

Y. Shehu, A. Gibali and S. Sagratella, Inertial projection-type method for solving quasi variational inequalities in real Hilbert space, J. Optim. Theory Appl. 184 (2020), 877-894. https://doi.org/10.1007/s10957-019-01616-6

G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258(1964), 4413-4416.

E. Tonti, Variational formulation for every nonlinear problem, Intern. J. Eng. Sci. 22(11-12) (1984), 1343-1371. https://doi.org/10.1016/0020-7225(84)90026-0

P. Tseng, A modified forward-backward splitting method for maximal monotone map- pings, SIAM J. Control Optim. 38 (2000), 431-446. https://doi.org/10.1137/S0363012998338806

S. Zeng, D. Motreanu and A. A. Khan, Evolutionay quasi-hemivariational inequalities I: existence and optimal control, J. Optim. Theory Appl. (2021). https://doi.org/10.1007/s10957-021-01963-3

S. Zeng, S. Miorski and A. A. Khan, Nonlinear quasi-hemivariational inequalities: existence and optimal control, SIAM J. Control Optim. 59(2) (2021), 1246-1274. https://doi.org/10.1137/19M1282210

Published
2022-05-22
How to Cite
Noor, M. A., & Noor, K. I. (2022). Some Novel Aspects of Quasi Variational Inequalities. Earthline Journal of Mathematical Sciences, 10(1), 1-66. https://doi.org/10.34198/ejms.10122.166
Section
Articles

Most read articles by the same author(s)