Some New Classes of Harmonic Hemivariational Inequalities

  • Muhammad Aslam Noor Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
  • Khalida Inayat Noor Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
Keywords: harmonic hemivariational inequalities, iterative methods, convergence, harmonic convex functions

Abstract

Some new classes of harmonic hemivariational inequalities are introduced and investigated in this paper. It has been shown that the optimality conditions of the sum of two harmonic convex functions can be characterized by the harmonic hemivariational inequalities. Several special cases such as harmonic complementarity problems and related harmonic problems are discussed. The auxiliary principle technique is applied to suggest and analyze some iterative schemes for harmonic hemivariational inequalities. We prove the convergence of these iterative methods under some weak conditions. Our method of proof of the convergence criteria is simple compared to other techniques. Results obtained in this paper continue to hold for new and known classes of harmonic variational inequalities and related optimization problems. The ideas and techniques of this paper may inspire further research in various branches of pure and applied sciences.

References

F. Al-Azemi and O. Calin, Asian options with harmonic average, Appl. Math. Inform. Sci. 9 (2015), 1-9.

G. Alirezaei and R. Mazhar, On exponentially concave functions and their impact in information theory, J. Inform. Theory Appl. 9(5) (2018), 265-274. https://doi.org/10.1109/ita.2018.8503202

F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim. 14 (2003), 773-782. https://doi.org/10.1137/s1052623403427859

G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), 1294-1308. https://doi.org/10.1016/j.jmaa.2007.02.016

F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.

R. W. Cottle, Jong-S. Pang and R. E. Stone, The Linear Complementarity Problem, SIAM Publication, 1992.

F. Giannessi, A. Maugeri and M. S. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Kluwer Academic, Dordrecht, Holland, 2001. https://doi.org/10.1007/b101835

R. Glowinski, J-L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, Holland, 1981.

I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe, J. Math. Stats. 43(6) (2014), 935-942. https://doi.org/10.15672/hjms.20164516901

S. Karamardian, Generalized complementarity problems, J. Opt. Theory Appl. 8 (1971), 161-168.

A. G. Khan, M. A. Noor, M. Pervez and K. I. Noor, Relative reciprocal variational inequalities, Honam J. Math. 40(3) (2018), 509-519.

J. L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math. 20 (1967), 493-519. https://doi.org/10.1002/cpa.3160200302

B. B. Mohsen, M. A. Noor, K. I. Noor and M. Postolcahe, Strongly convex functions of higher order involving bifunction, Mathematics 7 (2019), 1028. https://doi.org/10.3390/math7111028

M. Aslam Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, UK, 1975.

M. A. Noor, Fixed point approach for complementarity problems, J. Math. Anal. Appl. 133 (1988), 437-448.

M. A. Noor, General variational inequalities, Appl. Math. Letters 1 (1988), 119-121.

M. A. Noor, Quasi variational inequalities, Appl. Math. Letters 1(4) (1988), 367-370.

M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042

M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), 199-277.

M. A. Noor, Hemivariational Inequalities, J. Appl. Math. Computing 17 (2005), 59-72

M. A. Noor and K. I. Noor, Higher order strongly general convex functions and variational inequalities, AIMS Math. 5(4) (2020), 3646-3663. https://doi.org/10.3934/math.2020236

M. A. Noor and K. I. Noor, Some classes of higher order general convex functions and variational inequalities, Montes Taurus J. Pure Appl. Math. 5(3) (2023), 1-15.

M. A. Noor and K. I. Noor, Higher order generalized variational inequalities and nonconvex optimization, U.P.B. Sci. Bull. Series A 85(2) (2023), 77-88.

M. A. Noor and K. I. Noor, Some new trends in mixed variational inequalities, J. Advanc. Math. Studies 15(2) (2022), 105-140.

M. A. Noor and K. I. Noor, Higher order strongly biconvex functions and biequilibrium problems, Advanc. Lin. Algebr. Matrix Theory 11(2) (2021), 31-53. https://doi.org/10.4236/alamt.2021.112004

M. A. Noor, K. I. Noor and H. M. Y. Al-Bayatti, Higher order variational inequalities, Inform. Sci. Letters 11(1) (2022), 1-5.

M. A. Noor and K. I. Noor, General biconvex functions and bivariational inequalities, Numerical Algeb. Control Optim. 13(1) (2023), 11-27. https://doi.org/10.3934/naco.2021041

M. A. Noor and K. I. Noor, An introduction to general variational inequalities, Preprint, 2023.

M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci. 10(5) (2016), 1811-1814. https://doi.org/10.18576/amis/100522

M. A. Noor and K. I. Noor, Some implicit methods for solving harmonic variational inequalities, Int. J. Anal. Appl. 12(1) (2016), 10-14.

M. A. Noor and K. I. Noor, Iterative schemes for solving higher order hemivariational inequalities, Appl. Math. E-Notes 24 (2024).

M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative harmonic preinvex functions (survey), TWMS J. Pure Appl. Math. 7(1) (2016), 3-19. https://doi.org/10.2298/fil1720575n

M. A. Noor, A. G. Khan, A. Pervaiz and K. I. Noor, Solution of harmonic variational inequalities by two-step iterative scheme, Turk. J. Inequal. 1(1) (2017), 46-52.

M. A. Noor, K. I. Noor and S. Iftikhar, Strongly generalized harmonic convex functions and integral inequalities, J. Math. Anal. 7(3) (2016), 66-77. https://doi.org/10.15330/cmp.11.1.119-135

M. A. Noor, K. I. Noor and S. Iftikhar, Some characterizations of harmonic convex functions, Inter. J. Anal. Appl. 15(2) (2017), 179-187.

M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically $h$-convex functions, U.P.B. Sci. Bull. Series A 77(1) (2015), 5-16. https://doi.org/10.18576/sjm/050203

M. A. Noor and K. I. Noor, Higher order generalized variational inequalities and nonconvex optimization, U.P.B. Sci. Bull. Series A 85(2) (2023), 77-88.

M. A. Noor and K. I. Noor, Some new systems of exponentially general equations, Advanc. Linear Algeb. Matrix Theory 12(3) (2022), 67-86. https://doi.org/10.4236/alamt.2022.123004

M. A. Noor, K. I. Noor, A. Hamdi and E. H. El-Shemas, On difference of two monotone operators, Optim. Letters 3 (2009), 329-335. https://doi.org/10.1007/s11590-008-0112-7

M. A. Noor, K. I. Noor, and M. Th. Rassias, New trends in general variational inequalities, Acta Appl. Math. 170(1) (2020), 981-1046. https://doi.org/10.1007/s10440-020-00366-2

M. A. Noor, K. I. Noor and Th. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993), 285-312. https://doi.org/10.1016/0377-0427(93)90058-j

M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Le Math. (Catania) 49 (1994), 313-331.

P. D. Panagiotopoulos, Nonconvex energy functions. Hemivariational inequalities and substationarity principles, Acta Mechanica 48 (1983), 111-130. https://doi.org/10.1007/bf01170410

P. D. Panagiotopolous, Hemivariational inequalities: Applications to Mechanics and Engineering, Springer Verlag, Berlin, Germany, 1995

M. Patriksson, Nonlinear Programming and Variational Inequalities: A Unified Approach, Kluwer Academic Publishers, Dordrecht, Holland, 1999

B. T. Polyak, Some methods of speeding up the convergence of iterative methods, USSR Comput.Math. Math. Phys. 4 (1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5

G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, Comptes Rendus de l'Academie des Sciences, Paris 258 (1964), 4413-4416.

Published
2023-08-26
How to Cite
Noor, M. A., & Noor, K. I. (2023). Some New Classes of Harmonic Hemivariational Inequalities. Earthline Journal of Mathematical Sciences, 13(2), 473-495. https://doi.org/10.34198/ejms.13223.473495
Section
Articles

Most read articles by the same author(s)