Luminol tautomers and their interaction with zinc cation – A DFT treatment
Abstract
Luminol is a chemiluminescent material having variety of applications. In the present study, its 1,3-proton tautomers have been considered within the restrictions of density functional theory at the level of B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels. Also, interaction of luminol tautomers with zinc dication at the level of B3LYP/6-31++G(d,p) is considered. All the structures considered presently are thermally favored and electronically stable at the standard states. The effect of zinc dication on the tautomers of luminol is not drastic but causes some conformational changes and enhancing the hydrogen bond formation in some cases. Some electron population has been transferred from the organic partner of the composite to the zinc cation, thereby lowering the initial formal charge of the cation. Various structural and quantum chemical data have been collected and discussed, including IR and UV-VIS spectra. Also the NICS (0) data have been obtained for the tautomers.
References
Barni, F., Lewis, S.W., Berti, A., Miskelly, G.M., & Lago, G. (2007). Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 72(3), 896-913. https://doi.org/10.1016/j.talanta.2006.12.045
Barnett, N.W., & Francis, P.S. (2005). Chemiluminescence: Liquid-phase. Encyclopedia of Analytical Science (2nd ed.). London: Elsevier Academic Press. https://doi.org/10.1016/B0-12-369397-7/00070-4
Kricka, L.J., Stanley, P.E., Thorpe, G.H.G., & Whitehead, T.P. (1984). Proceedings of the 3rd International symposium on bioluminescence and chemiluminescence. New York: Academic Press.
Nieman, T. (1989). In J.W. Birks (Ed.), Chemiluminescence and photochemical reaction detection in chromatography (pp. 99-123). New York: VCH.
García-Campana, A.M., Baeyens, W.R.G., & Zhao, Y. (1997). Peer reviewed: Chemiluminescence detection in capillary electrophoresis. Anal. Chem., 69(3), 83A- 88A. https://doi.org/10.1021/ac971535m
Yuan, J., & Shiller, A.M. (1999). Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Anal. Chem., 71(10), 1975-1980. https://doi.org/10.1021/ac981357c
Roda, A., Pasini, P., Guardigli, M., Baraldini, M., Musiani, M., & Mirasoli, M. (2000). Bio- and chemiluminescence in bioanalysis. Fresenius J. Anal. Chem., 366, 752-759. https://doi.org/10.1007/s002160051569
García-Campana, A.M., & Baeyens, W.R.G. (2001). Chemiluminescence in analytical chemistry. Boca Raton: CRC Press. https://doi.org/10.1201/9781482270693
Yamaguchi, M., Yoshida, H., & Nohta, H. (2002). Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis. J. Chromatogr. A, 950(1-2), 1-19. https://doi.org/10.1016/S0021-9673(02)00004-3
Barnett, N.W., & Francis, P.S. (2005). Chemiluminescence: Overview. In Encyclopedia of analytical science (2nd ed.). London: Elsevier Academic Press. https://doi.org/10.1016/B0-12-369397-7/00069-8
Vish, A.L., & Yeshion, T.E. (2004). The use of luminol as a presumptive blood test for prehistoric archaeological artifacts. N. Am. Archaeol., 25(2), 153-159. https://doi.org/10.2190/XC04-RLF4-NWXT-B7N2
Tug, A., Alakoc, Y.D., & Hanci, I.H. (2005). An end to a rumour. Forensic Sci. Int., 153(2-3), 156-160. https://doi.org/10.1016/j.forsciint.2004.08.022
Schmitz, A.J. (1902). Ueber das Hydrazid der Trimesinsäure und der Hemimellithsäure. Ph.D. Thesis. Heidelberg University; Heidelberg, Germany.
Albrecht, H.O. (1928). Über die Chemiluminescenz des Aminophthalsäurehydrazids. Z. Physik. Chem., 136(614), 321-330. https://doi.org/10.1515/zpch-1928-13625
Specht, W. (1937). Die Chemiluminescenz des Hämins, ein Hilfsmittel zur Auffindung und Erkennung forensisch wichtiger Blutspuren. Angew. Chem., 50(8), 155-157. https://doi.org/10.1002/ange.19370500803
Proescher, F., & Moody, A.M. (1939). Method of detecting and locating traces of blood and a compound for detecting traces of blood. J. Lab. Clin. Med., 24, 1183-1189.
McGrath, J. (1942). Chemical luminescence test for blood. Br. Med. J., 2, 156-157. https://doi.org/10.1136/bmj.2.4257.156
Grodsky, M., Wright, K., & Kirk, P.L. (1951). Simplified preliminary blood testing--an improved technique and a comparative study of methods, J. Crimin. Law Criminol. Police Sci., 42, 95-104. https://doi.org/10.2307/1140307
Weber, K. (1966). Die Anwendung der chemiluminescenz des luminols in der gerichtlichen medizin und toxikologie: I. Der nachweis von blutspuren. Dtsch. Z. Gesamte Gerichtl. Med., 57, 410-423. https://doi.org/10.1007/BF00583303
Ferreira E.C., & Rossi A.V. (2002). Chemiluminescence as an analytical tool: from the mechanism to applications of the reaction of luminol in kinetic based methods. Quim. Nova, 25(6), 1003-1011. https://doi.org/10.1590/S0100-40422002000600018
Jabarah, Z.A., Mahdi, I.S., & Jaafar, W.A. (2019). Lumonil compounds in criminal chemistry. Egyptian Journal of Chemistry, 62(10), 1907-1916. https://doi.org/10.21608/ejchem.2019.9697.1651
Yao, H., Huang, X., Shi, P., Lin, Z., Zhu, M., Liu, A., Lin, X., Tang, Y. (2017). DPPH–luminol chemiluminescence system and its application in the determination of scutellarin in pharmaceutical injections and rat plasma with flow injection analysis. Luminescence, 32, 588-595. https://doi.org/10.1002/bio.3225
Ram, G.S, Vivek M.R., & Maruti L.N. (2013). Effect of temperature on chemiluminescence of luminol ethyl amine in water and DMSO. Der Chemica Sinica, 4(3), 161-164.
da Silva, R.R., Agustini, B.C., da Silva, A.L.L., Frigeri, H.R. (2012). Luminol in the forensic science. Journal of Biotechnology and Biodiversity, 3(4), 172-177. https://doi.org/10.20873/jbb.uft.cemaf.v3n4.rogiskisilva
Navas, D.A., González G.J.A., & Lovillo, J. (1997). Enhancer effect of fluorescein on the luminol–H2O2–horseradish peroxidase chemiluminescence: energy transfer process. J. Biolumin Chemilumin., 12, 199-205. https://doi.org/10.1002/(SICI)1099-1271(199707/08)12:4%3C199::AID-BIO445%3E3.0.CO;2-U
Navas, D.A., Sanchez F.G. & Gonzalez, G.J.A. (1998). Phenol derivatives as enhancers and inhibitors of luminol-H2O2-horseradish peroxidase chemiluminescence. J. Biolumin Chemilumin., 13, 75-84. https://doi.org/10.1002/(SICI)1099-1271(199803/04)13:2%3C75::AID-BIO469%3E3.0.CO;2-7
Li, S.F., Wang, H.Y., Min, X., Zhang, L., Wang, J., Du, J., Zhang, J.Q., Wei, P., Wang, Z.Q., Zhang, H., Wu, W. (2014). Chemiluminescence behavior of luminol-KIO4-Ag nanoparticles system and its analytical applications. J. Biomedical Science and Engineering, 7(6), 307-315. https://doi.org/10.4236/jbise.2014.76033
Khajvand, T., Akhoondi, R., Chaichi, M.J., Rezaee, E., & Golchoubian, H. (2014). Two new dinuclear copper(II) complexes as efficient catalysts of luminol chemiluminescence. Journal of Photochemistry and Photobiology A: Chemistry, 282, 9-15. https://doi.org/10.1016/j.jphotochem.2014.02.011
Shinde R.G., & Narwade M.L. (2014). Effect of temperature on chemiluminescence of luminol in aqueous ethyl amines with H2O2+ metal ions. Journal of Applied Chemistry (IOSR-JAC), 7(7), 50-52. https://doi.org/10.9790/5736-07735052
Giussani, A., Farahani, P., Martínez-Muñoz, D., Lundberg, M., Lindh, R., & Roca- Sanjuán, D. (2019). Molecular basis of the chemiluminescence mechanism of luminal. Chemistry A European Journal, 25(20), 5202-5213. https://doi.org/10.1002/chem.201805918
Sulaiman, K.O., Onawole, A.T., Shuaib, D.T., & Saleh, T.A. (2019). Quantum chemical approach for chemiluminescence characteristics of di-substituted luminal derivatives in polar solvents. Journal of Molecular Liquids, 279, 146-153. https://doi.org/10.1016/j.molliq.2019.01.110
Yue, L., & Liu, Y-T. (2020). Mechanistic ınsight into pH-dependent luminol chemiluminescence in aqueous solution. J. Phys. Chem. B, 124(35), 7682-7693. https://doi.org/10.1021/acs.jpcb.0c06301
Moyon, N.S., Chandra, A.K., & Mitra, S. (2010). Effect of solvent hydrogen bonding on excited-state properties of luminol: A combined fluorescence and DFT study. J. Phys. Chem. A, 114 (1), 60-67. https://doi.org/10.1021/jp907970b
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling (2nd ed.). Essex: Longman.
Fletcher, P. (1990). Practical methods of optimization (1st ed.). New York: Wiley.
Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, 133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules (1st ed.). London: Oxford University Press.
Cramer, C.J. (2004). Essentials of computational chemistry (2nd ed.). Chichester, West Sussex: Wiley.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev., B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
This work is licensed under a Creative Commons Attribution 4.0 International License.