Isomers and tautomers of aminonitroethylenes – A DFT study

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: aminonitroethylene, push-pull alkenes, explosives, density functional, donor-acceptor

Abstract

Aminonitroethylene isomers and their 1,3- and 1,5-proton tautomers are considered within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). Aminonitroethylene is a part of the well known explosive FOX-7 which is characterized with a pull-push type resonance. All the structures considered possess thermodynamically exothermic heat of formation values are, electronically stable, and have favorable Gibbs’ free energy of formation values at the standard states. Various quantum chemical properties, including IR and UV-VIS spectra, the HOMO and LUMO energies etc., have been obtained and discussed.

References

Kleinpeter, E. (2006). Push-pull alkenes: Structure and -electron distribution. Journal of the Serbian Chemical Society, 71(1), 1-17. https://doi.org/10.2298/JSC0601001K

Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.

Dykstra, C.E., Frenking, G., Kim, K., & Scuseria, G. (2015). Theory and applications of computational chemistry: The first forty years. New York: Elsevier.

Yanai, H., Suzuki, T., Kleemiss, F., Fukaya, H., Malaspina, L.A., Grabowsky, S., & Matsumoto, T. (2019). Chemical bonding in polarized push-pull ethylenes. Angewandte Chemie International Edition, 58(26), 8839-8844. https://doi.org/10.1002/anie.201904176

Shainyan, B.A., Fettke, A., & Kleinpeter, E. (2008). Push-pull vs captodative aromaticity. J. Phys. Chem. A, 112(43), 10895-10903. https://doi.org/10.1021/jp804999m

Pappalardo, R.R., Marcos, E.S., Ruiz-Lóapez, M.F., & Rinaldi D. (1991). Theoretical study of simple push-pull ethylenes in solution. Journal of Physical Organic Chemistry, 4(3), 41-148. https://doi.org/10.1002/poc.610040304

Politzer, P., Concha, M.C., Grice, M.E., Murray J.S., Lane, P., & Habibollazadeh, D. (1998). Computational investigation of the structures and relative stabilities of amino/nitro derivatives of ethylene. Journal of Molecular Structure (Theochem), 452, 75-83. https://doi.org/10.1016/S0166-1280(98)00136-5

Kleinpeter, E., Klod, S., & Rudorf, Wolf-Dieter. (2004). Electronic state of push-pull alkenes: An experimental dynamic NMR and theoretical ab ınitio MO study. J. Org. Chem., 69(13), 4317-4329. https://doi.org/10.1021/jo0496345

Ababneh-Khasawneh, M., Fortier-McGill, B.E., Occhionorelli, M.E., & Bain, A.D. (2011). Solvent effects on chemical exchange in a push-pull ethylene as studied by NMR and electronic structure calculations. J. Phys. Chem. A, 115(26), 7531-7537. https://doi.org/10.1021/jp201885q

Türker, L., Bayar, Ç.Ç., & Balaban, A.T. (2010). A DFT study on push-pull (amino-nitro) fulminenes and hexahelicenes. Polycyclic Aromatic Compounds, 30(2), 91-111. https://doi.org/10.1080/10406631003756005

Türker, L., & Bayar, Ç.Ç. ( 2010). A DFT study on disubstituted R-hexahelicenes having donor/acceptor groups. Procedia Computer Science, 1(1), 1155-1164. https://doi.org/10.1016/j.procs.2010.04.129

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling (2nd ed.). Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization (1st ed.). New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, 133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules (1st ed.). London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry (2nd ed.). Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev., B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

Dewar, J.M.S. (1969). The molecular orbital theory of organic chemistry. New York: McGraw-Hill.

Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.

Türker, L. (2004). Possibility of cyclic transition states of nitroglycerine. Theochem, 68, 15-19. https://doi.org/10.1016/j.theochem.2004.03.037

Türker, L. (2011). Recent developments in the theory of explosive materials, In T.J. Jansen (Ed.), Explosive materials, materials science and technologies. New York: Nova Science Pub.

Türker, L. (2009). Structure-impact sensitivity relation of certain explosive compounds. J. of Energetic Mater., 27, 94-109. https://doi.org/10.1080/07370650802405182

Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.

Published
2024-08-18
How to Cite
Türker, L. (2024). Isomers and tautomers of aminonitroethylenes – A DFT study. Earthline Journal of Chemical Sciences, 11(4), 489-514. https://doi.org/10.34198/ejcs.11424.489514
Section
Articles