Some isomers and tautomers of goitrin – A DFT treatment
Abstract
Goitrin is a molecule found in some goitrogenic plants. In the present study goitrin an its 1,3-proton tautomer, as well as the isomeric structures constructed by sulfur-oxygen replacement in the goitrin and its tautomer are considered within the restrictions of density functional theory at the level of B3LYP/6-31++G(d,p). All the structures considered presently are thermally favored and electronically stable at the standard states. On the other hand, in the presence of magnesium dication goitrin undergoes decomposition by the rapture of one of the C-O bonds. The effect of magnesium dication on the tautomer of goitrin is not so drastic but causes some conformational changes. Various geometrical and quantum chemical data have been collected and discussed, including IR and UV-VIS spectra.
References
Greenspan, F.S., & Dong, B.J. (1984). Thyroid and antithyroid drugs, (in Basic and clinical pharmacology, Kanzung, B.G. (Ed.) (2nd ed.)). Los Altos, California: Lange Medical Pub.
Greenspan, F.S., & Rapport, B. (1983). Thyroid gland, (in Basic and clinical endocrinology, Greenspan, F.S., & Horsham P.H. (Eds.)). Los Altos, California: Lange Medical Pub.
Bones, A.M., & Rossiter, J.T. (1996). The myrosinase-glucosinolate system, its organization and biochemistry. Physiologia Plantarum, 97, 194-208. https://doi.org/10.1111/j.1399-3054.1996.tb00497.x
Kissen, R., Rossiter, J., & Bones, A. (2009). The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev., 8, 69-86. https://doi.org/10.1007/s11101-008-9109-1
Mithen, R. (2006). Plant secondary metabolites: occurrence, structure, and role in the human diet. Sulfur-containing compounds. (In: Crozier, A., Clifford, M.N., Asihara, H., (Eds.)). Oxford: Blackwell Publishing, Ltd. p. 25-46. https://doi.org/10.1002/9780470988558.ch2
Gaitan, E. (1990). Goitrogens in food and water. Annu Rev Nutr. 10, 21-39. https://doi.org/10.1146/annurev.nu.10.070190.000321
Ke, L.J., Wen, T., Bradshaw, J.P., Zhou, J., & Rao, P. (2012). Antiviral decoction of Isatidis Radix inhibited influenza virus adsorption on MDCK cells by cytoprotective activity. Journal of Traditional and Complementary Medicine, 2(1), 47-51. https://doi.org/10.1016/S2225-4110(16)30070-0
Li, Q., Chen, J., Xiao, Y., Di, P., Zhang, L., & Chen, W. (2014). The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance. BMC Genomics, 15, article 388. https://doi.org/10.1186/1471-2164-15-388
Tian, L., & Wang, Z. (2012). Study on antibacterial activity of Radix isatidis extracts and preliminary investigation of their antibacterial mechanism. in Proceedings of the 2012 International Conference on Applied Biotechnology, Berlin, Germany: Springer.
Xu, L.-H., Huang, F., Cheng, T., & Wu, J. (2005). Antivirus constituents of radix of Isatis indigotica. Chinese Journal of Natural Medicines, 3(6), 359-360. http://zgtryw.periodicals.net.cn
Ye, W.Y., Li, X., & Cheng, W.J. (2011). Screening of eleven chemical constituents from Radix Isatidis for antiviral activity. African Journal of Pharmacy and Pharmacology, 5(16), 1932-1936. https://doi.org/10.5897/AJPP11.559
Zhang, S.J., Liu, M.H., Li, H.B., Jiang, L., Luo, Y., & Sun, Q. (2013). In vitro anti-viral effects and dose-effect relationship of epigoitrin and fructopyrano-(1 → 4)-glucopyranose based on deletion/increment strategy. Chinese Journal of New Drugs, 22(9), 1083-1087.
Felker, P., Bunch, R., & Leung, A.M. (2016). Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutrition Reviews, 74(4), 248-258. https://doi.org/10.1093/nutrit/nuv110
Wooding, S., Gunn, H., Ramos, P., Thalmann, S., Xing, C., & Meyerhof, W. (2010). Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chemical Senses, 35(8), 685-692. https://doi.org/10.1093/chemse/bjq061
Xie, Z., Shi, Y., Wang, Z., Wang, R., & Li, Y. (2011). Biotransformation of glucosinolates epiprogoitrin and progoitrin to (R)- and (S)-goitrin in Radix isatidis. J. Agric. Food Chem., 59 (23), 12467-12472. https://doi.org/10.1021/jf203321u
Nie, L., Dai, Z., & Ma, S. (2016). Improved chiral separation of (R,S)-goitrin by SFC: An application in traditional chinese medicine. Journal of Analytical Methods in Chemistry, 2016, 5782942. https://doi.org/10.1155/2016/5782942
Nie, L., Wang, G., Dai, Z., & Lin, R. (2010). Determination of epigoitrin and goitrin in Isatidis Radix by chiral high performance liquid chromatography. Chinese Journal of Chromatography, 28(10), 1001-1004. http://dx.doi.org/10.3724/SP.J.1123.2010.01001
Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling (2nd ed.). Longman, Essex.
Fletcher, P. (1990). Practical methods of optimization (1st ed.). New York: Wiley.
Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, 133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules (1st ed.). London: Oxford University Press.
Cramer, C.J. (2004). Essentials of computational chemistry (2nd ed.). Chichester, West Sussex: Wiley.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev., B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
This work is licensed under a Creative Commons Attribution 4.0 International License.