Effect of magnesium on FOX-7+TNAZ composite - A DFT treatise

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: FOX-7, DADNE, TNAZ, explosives, magnesium, DFT


In the present computational study, the 1:1 binary composite of FOX-7 and TNAZ system and the effect of magnesium on it have been investigated within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). The composites with and without magnesium are found to be electronically stable. Thermo chemically they have exothermic heat of formation and favorable free energy of formation values. The data reveal the striking effect of Mg such that narrowing of the frontier molecular orbitals occurs which should cause the increased sensitivity to impact stimulus. Some geometrical, quantum chemical and spectral data also have been harvested and discussed.


Agrawal, J.P. (2010). High energy materials (1st ed.), Weinheim: Wiley-VCH. https://doi.org/10.1002/9783527628803

Politzer, P., & Murray, J.S. (2003). Energetic materials, Part 1 (1st ed.), Amsterdam: Elsevier.

Lochert, I.J. (2001). FOX-7 - A new insensitive explosive FOX-7. DSTO Aeronautical and Maritime Research Laboratory Australia, AR-012-065, November 2001.

Latypov, N.V., Bergman, J., Langlet, A., Wellmar, U., & Bemm, U. (1998). Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron, 54, 11525-11536. https://doi.org/10.1016/S0040-4020(98)00673-5

Bemm, U., & Östmark, H. (1998). 1,1-Diamino-2,2-dinitroethylene: A novel energetic material with infinite layers in two dimensions. Acta Crystallogr., C 54, 1997-1999. https://doi.org/10.1107/S0108270198007987

Latypov, N.V., Langlet, A., & Wellmar, U. (1999). New chemical compound suitable for use as an explosive, intermediate and method for preparing the compound. Patent No. WO99/03818.

Östmark, H., Bergman, H., Bemm, U., Goede, P., Holmgren, E., Johansson, M., Langlet, A., Latypov, N.V., Petterson, A., Petterson, M.L., Wingborg, N., Vörde, C., Stenmark, H., Karlsson, L., & Hihkiö, M. (2001). 2,2-Dinitro-ethene-1,1-diamine (FOX-7) - Properties, analysis and scale-up. Paper presented at the 32nd International Annual Conference of ICT on Energetic Materials-Ignition, Combustion and Detonation, Karlsruhe, Germany.

Östmark, H., Langlet, A., Bergman, H., Wingborg, N., Wellmar, U., & Bemm, U. (1998). FOX-7 – A new explosive with low sensitivity and high performance. Paper presented at The 11th International Detonation Symposium, Colorado, USA, 1998.

Bergman, H., Ostmark, H., Pettersson, A., Petterson, M.L., Bemm, U., & Hihkio, M. (1999). Some initial properties and thermal stability of FOX-7. Paper presented at the Insensitive Munitions and Energetic Materials Symposium (NDIA), Tampa, Florida, USA, 1999.

Trzciński, W.A., & Belaada, A. (2016). 1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) – Properties and formulations (a Review). Cent. Eur J. Energ. Mater., 13(2), 527-544.

Janzon, B., Bergman, H., Eldsater, C., Lamnevik, C., & Ostmark, H. (2002). FOX-7 – A novel, high performance, low vulnerability high explosive for warhead applications. Paper presented at the 20th International Symposium on Ballistics, Orlando, Florida, USA, September 23-27, 2002.

Matyushin, Y.N., Afanas’ev, G.T., Lebedev, V.P, Mahov, M.N., & Pepekin, V.I. (2003). TATB and FOX-7: Thermochemistry, performance, detonability, sensitivity. Paper presented at the 34th International Annual Conference of the Institute of Chemical Technology (ICT), Karlsruhe, Germany, June 24-27, 2003.

Bellamy, A.J., Latypov, N.V., & Goede, P. (2004). Studies on the nitration of new potential precursors for FOX-7. Paper presented at the 7th Seminar on New Trends in Research on Energetic Materials, Pardubice, Czech Republic, April 20-22, 2004.

Cudziło, S., Chyłek, Z., & Diduszko, R. (2005). Crystallization and characterization of 1,1-diamino-2,2-dinitroethene (DADNE). Paper presented at the 36th International Annual Conference of ICT, Karlsruhe, Germany, June 28-July 1, 2005.

Trzciński, W.A., Cudziło, S., Chyłek, Z., & Szymańczyk, L. (2008). Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE). Journal of Hazardous Materials, 157(2-3), 605-612. https://doi.org/10.1016/j.jhazmat.2008.01.026

Anniyappan, M., Talawar, M.B., Gore, G.M., Venugopalan, S., & Gandhe, B.R. (2006). Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) and its salts. J. Hazard. Mater., B 137, 812-819. https://doi.org/10.1016/j.jhazmat.2006.03.034

Mishra, V.S., Vadali, S.R., Garg, R.K., Joshi, V.S., Wasnik, R.D., & Asthana, S. (2013). Studies on FOX-7 based melt cast high explosive formulations. Cent. Eur J. Energ. Mater., 10(4), 569-580.

Latypov, N.V., Johansson, M., Holmgren, E., Sizova, E.V., Sizov, V.V., & Bellamy, A.J. (2007). On the synthesis of 1,1-diamino-2,2-dinitroethene (FOX-7) by nitration of 4,6-dihydroxy-2-methylpyrimidine. Org. Process Res. Dev., 11(1), 56-59. https://doi.org/10.1021/op068010t

Zhang, Y., Sun, Q., Xu, K., Song, J., & Zhao, F. (2016). Review on the reactivity of 1,1-diamino-2,2-dinitroethylene (FOX-7). Propellants Explos. Pyrotech., 41, 35-52. https://doi.org/10.1002/prep.201500065

Baum, K., Nguyen, N.V., Gilardi, R., Flippen-Anderson, J.L., & George, C. (1992). Nitration of 1,1-diamino-2,2-dinitroethylenes. Journal of Organic Chemistry, 57, 3026-3030. https://doi.org/10.1021/jo00037a015

Klapötke, T.M. ( 2011). Chemistry of high-energy materials (1st ed.), Berlin: De Gruyter.

Lips, H., & Menke, K. (2013). FOX-7/GAP rocket propellants for a shoulder launched projectile. Paper presented at the 27th International Symposium on Ballistics, Freiburg, Germany, April 22-26, 2013.

Pagoria, P.F., Lee, G.S., Mitchell, R.A., & Schmidt, R.D. (2002). A review of energetic materials synthesis. Thermochim. Acta., 384, 187-204. https://doi.org/10.1016/S0040-6031(01)00805-X

Jadhav, H.S., Talawar, M.B., Dhavale, D.D., Asthana, S.N., & Krishnamurthy, V.V. (2006). Alternate method to synthesis of 1,3,3-trinitroazetedine (TNAZ): Next generation melt castable high energy material. Indian J. of Chemical Technology, 13, 41-46.

Archibald, T.G., Gilardi, R., Baum, K., & George, C.J. (1990). Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. J. Org. Chem., 55, 2920-2924. https://doi.org/10.1021/jo00296a066

McKenney, R.L., Jr., Floyd, T.G., Stevens, W.E., Archibald, T.G., Marchand, A.P., Sharma, G.V.M., & Bott, S.G. (1999). Synthesis and thermal properties of 1,3-dinitro-3- (1′,3′-dinitroazetidin-3′-yl) azetidine (TNDAZ) and its admixtures with 1,3,3- trinitroazetidine (TNAZ). J. Energ. Mater., 16, 199-235. https://doi.org/10.1080/07370659808217513

Hiskey, A.M., Johnson, M.C., & Chavez, E.D. (1999). Preparation of 1-substituted-3,3- dinitroazetidines, J. Energ. Mater., 17, 233-252. https://doi.org/10.1080/07370659908216106

Zhang, J., Rongzu, H., Chunhua, Z., Guofu, F., & Quihe, L. (1997). Thermal behavior of 1,3,3-trinitroazetidine. Thermochim. Acta., 298, 31-35. https://doi.org/10.1016/S0040-6031(97)00056-7

Zeman, S. (1993). The thermoanalytical study of some amino derivatives of 1,3,5- trinitrobenzene. Thermochim. Acta., 216, 157-168. https://doi.org/10.1016/0040-6031(93)80389-R

Keshavarz, M.H. (2006). Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds. J. Hazard. Mater., A, 138, 448-451. https://doi.org/10.1016/j.jhazmat.2006.05.097

Jalovy, Z., Zeman, S., Suceska, M., Vavra, P., Dudek, K., & Rajic, J.M. (2001). 1,3,3- Trinitroazetidine (TNAZ). Part I. Syntheses and properties. J. Energ. Mater., 19, 219-239. https://doi.org/10.1080/07370650108216127

Watt, D.S., & Cliff, M.D. (2000). Evaluation of 1,3,3-trinitroazetidine (TNAZ) - A high performance melt-castable explosive. Technical Report DSTO-TR-1000. Defence Science & Technology Organization (DSTO). Aeronautical and Maritime Research Laboratory, Melbourne, Australia.

Sikder, A.K., & Sikder, N. (2004). A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater., A112, 1-15. https://doi.org/10.1016/j.jhazmat.2004.04.003

Iyer, S., Sarah, E.Y., Yoyee, M., Perz, R., Alster, J., & Stoc, D. (1992). TNAZ based composition C-4 development. In 11th Annual Working Group, Institute on Synthesis of High Density Materials (Proc.). Kiamesha Lakes.

Oftadeh, M., Hamadanian, M., Radhoosh, M., & Keshavarz, M.H. (2011). DFT molecular orbital calculations of initial step in decomposition pathways of TNAZ and some of its derivatives with –F, –CN and –OCH3 groups. Computational and Theoretical Chemistry, 964, 262-268. https://doi.org/10.1016/j.comptc.2011.01.007

Doali, J.O., Fifer, R.A., Kruzezynski, D.I., & Nelson, B.J. (1989). The mobile combustion diagnostic fixture and its application to the study of propellant combustion Part-I. Investigation of the low pressure combustion of LOVA XM-39 Propellant, Technical report No. BRLMR-3787/5, US Ballistic Research Laboratory, Maryland.

Agrawal, J.P. (1998). Recent trends in high-energy materials. Prog. Energ. Combust. Sci., 24(1), 1-30. https://doi.org/10.1016/S0360-1285(97)00015-4

Coburn, M.D., Hiskey, M.A., & Archibald, T.G. (1997). Scale-up and waste- minimization of the Los Alamos process for 1,3,3-trinitroazetidine (TNAZ). Waste Management, 17, 143-146. https://doi.org/10.1016/S0956-053X(97)10013-7

Jizhen, L., Xuezhong, F., Xiping, F., Fengqi, Z., & Rongzu, H. (2006). Compatibility study of 1,3,3-trinitroazetidine with some energetic components and inert materials. Journal of Thermal Analysis and Calorimetry, 85(3), 779-784. https://doi.org/10.1007/s10973-005-7370-8

Türker, L., & Varis, S. (2012). Desensitization of TNAZ via molecular structure modification and explosive properties – A DFT study. Acta Chim. Slov., 59, 749-759.

Conkling, J.A. (1985). Chemistry of pyrotechnics. Boca Raton: CRC press.

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling (2nd ed.). Longman, Essex.

Fletcher, P. (1990). Practical methods of optimization (1st ed.). New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, 133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules (1st ed.). London: Oxford University Press,

Cramer, C.J. (2004). Essentials of computational chemistry (2nd ed.). Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation- energy formula into a functional of the electron density. Phys. Rev., B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

Durant, P.J., & Durant, B. (1972). Introduction to advanced inorganic chemistry (2nd ed.). London: Longman.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326

How to Cite
Türker, L. (2024). Effect of magnesium on FOX-7+TNAZ composite - A DFT treatise. Earthline Journal of Chemical Sciences, 11(2), 267-282. https://doi.org/10.34198/ejcs.11224.267282