Some strong dimers of TNAZ - DFT treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: TNAZ, 1,3,3-trinitroazetidine, explosive, strong dimers, density functional


TNAZ is an explosive material. Presently, some strong dimers of TNAZ have been investigated within the constraints of density functional theory at the level of B3LYP/6-31G(d,p). Core structure of the dimers of consideration is theoretically derived from pseudocyclacene structure by means of certain centric perturbations, and then nitro groups are attached at the desired positions or from two TNAZ molecules via certain intermolecular perturbations. All the present dimers are electronically stable, thermodynamically exothermic and have favorable Gibbs’ free energy of formation values at the standard states. Various structural and quantum chemical properties, including UV-VIS spectra have been obtained and discussed.


Archibald, T.G., Gilardi, R., Baum, K., & George, C. (1990). Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. The Journal of Organic Chemistry, 55(9), 2920- 2924.

Viswanath, D.S., Ghosh, T.K., & Boddu, V.M. (2018). 1,3,3-Trinitroazetidine (TNAZ). In T. M. Klapötke & J. Stierstorfer (Eds.), Emerging energetic materials: Synthesis, physicochemical, and detonation properties (pp. 293-307). Dordrecht, Netherlands: Springer.

Zdenek, J., Zeman, S., Suceska, M., Vávra, P., Dudek, K., & Rajic, M. (2001). 1,3,3-trinitroazetidine (TNAZ). Part I. Syntheses and properties. Journal of Energetic Materials, 19(2), 219-239.

Axenrod, T., Watnick, C., Yazdekhasti, H., & Dave, P. R. (1993). Synthesis of 1,3,3- trinitroazetidine. Tetrahedron Letters, 34(42), 6677-6680.

Ducan, S.W., & Mathew, D.C. (2000). Evaluation of 1,3,3-trinitroazetidine (TNAZ) – A high performance melt-castable explosive, DSTO Aeronautical and Maritime Research Laboratory, P.O. Box 4331, Melborne-Victoria 3001, Australia AR-011-500, July 2000 and ibid, TNAZ based melt-cast explosives: Technology review and ARML Research Directions, DSTO-TR-0702, Aeronautical and Maritime Research Laboratory (AMRL)- DSTO, Fishermans Bed, 1998.

McKenney, R.L., Jr., Floyd, T.G., Stevens, W.E., Archibald, T.G., Marchand, A.P., Sharma, G.V.M., & Bott, S.G. (1998). Synthesis and thermal properties of 1,3-dinitro-3-(1′,3′-dinitroazetidin-3′-yl) azetidine (TNDAZ) and its admixtures with 1,3,3- trinitroazetidine (TNAZ). J. Energ. Mater., 16, 199-235.

Hiskey, A.M., Johnson, M.C., & Chavez, E.D. (1999). Preparation of 1-substituted-3,3- dinitroazetidines. J. Energ. Mater., 17, 233-252.

Pagoria, P.F., Lee, G.S., Mitchell, R.A., & Schmidt, R.D. (2002). A review of energetic materials synthesis. Thermochim. Acta., 384, 187-204.

Jadhav, H.S., Talawar, M.B., Dhavale, D.D., Asthana, S.N., & Krishnamurthy, V.V. (2006). Alternate method to synthesis of 1,3,3-trinitroazetedine (TNAZ): Next generation melt castable high energy material. Indian J. Chem. Technol., 13, 41-46.

Doali, J.O., Fifer, R.A., Kruzezynski, D.I., & Nelson, B.J. (1989). The mobile combustion diagnostic fixture and its application to the study of propellant combustion Part-I. Investigation of the low pressure combustion of LOVA XM-39 Propellant, Technical report No. BRLMR-3787/5, US Ballistic Research Laboratory, Maryland, 1989.

Wilcox, C.F., Zhang, Y.-X., & Bauer, S.H. (2000). The thermo chemistry of TNAZ (1,3,3-trinitroazetidine) and related species: models for calculating heats of formation. Journal of Molecular Structure: THEOCHEM., 528(1-3), 95-109.

Jizhen, L., Xuezhong, F., Xiping, F., Fengqi, Z., & Rongzu, H. (2006). Compatibility study of 1,3,3-trinitroazetidine with some energetic components and inert materials. Journal of Thermal Analysis and Calorimetry, 85(3), 779-784.

Iyer, S., Sarah, Y., Yoyee, M., Perz, R., Alster, J., & Stoc, D. (1992). III, TNAZ based composition C-4 development, 11th Annual Working Group, Institute on Synthesis of High Density Materials (Proc.), Kiamesha Lakes, 1992.

Oftadeh, M., Hamadanian, M., Radhoosh, M., & Keshavarz, M.H. (2011). DFT molecular orbital calculations of initial step in decomposition pathways of TNAZ and some of its derivatives with –F, –CN and –OCH3 groups. Computational and Theoretical Chemistry, 964, 262-268.

Türker, L., & Varis, S. (2012). Desensitization of TNAZ via molecular structure modification and explosive properties – A DFT study. Acta Chim. Slov., 59, 749-759.

Wu, J., Huang, Y., Yang, L., Geng, D., Wang, F., Wang, H., & Chen, L. (2018). Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine. Chem. Phys. Chem., 19(20), 2683-2695.

Türker, L. (2021). Some ions of TNAZ - A DFT Study. Earthline Journal of Chemical Sciences, 6(2), 215-228.

Türker, L. (2020). A DFT treatment of some aluminized 1,3,3-trinitroazetidine (TNAZ) systems - A deeper look. Earthline Journal of Chemical Sciences, 3(2), 121-140.

Türker, L. (2021). Effect of selenium on TNAZ molecule - A DFT treatment. Earthline Journal of Chemical Sciences, 6(1), 119-135.

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Türker, L. (2003). An ab initio treatment on some isomeric structures of a small pseudocyclacene. Journal of Molecular Structure (THEOCHEM)., 637 (1-3), 109-113.

Türker, L. (1999). PM3 treatment of monoazacyclacenes. Journal of Molecular Structure: THEOCHEM., 492(1-3), 159-163.

Türker, L. (1994). Cryptoannulenic behavior of cyclacenes. Polycyclic Aromatic Compounds, 4(3), 191-197.

Türker, L., & Gümüş, S. (2004). Cyclacenes. Journal of Molecular Structure: THEOCHEM., 685(1-3) , 1-33.

Dewar, J.M.S. (1969). The molecular orbital theory of organic chemistry. New York: McGraw-Hill.

Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632.

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, Journal of Energetic Materials, 24, 17-33.

How to Cite
Türker, L. (2024). Some strong dimers of TNAZ - DFT treatment. Earthline Journal of Chemical Sciences, 11(2), 231-248.