Some strong dimers of TNAZ - DFT treatment
Abstract
TNAZ is an explosive material. Presently, some strong dimers of TNAZ have been investigated within the constraints of density functional theory at the level of B3LYP/6-31G(d,p). Core structure of the dimers of consideration is theoretically derived from pseudocyclacene structure by means of certain centric perturbations, and then nitro groups are attached at the desired positions or from two TNAZ molecules via certain intermolecular perturbations. All the present dimers are electronically stable, thermodynamically exothermic and have favorable Gibbs’ free energy of formation values at the standard states. Various structural and quantum chemical properties, including UV-VIS spectra have been obtained and discussed.
References
Archibald, T.G., Gilardi, R., Baum, K., & George, C. (1990). Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. The Journal of Organic Chemistry, 55(9), 2920- 2924. https://doi.org/10.1021/jo00296a066
Viswanath, D.S., Ghosh, T.K., & Boddu, V.M. (2018). 1,3,3-Trinitroazetidine (TNAZ). In T. M. Klapötke & J. Stierstorfer (Eds.), Emerging energetic materials: Synthesis, physicochemical, and detonation properties (pp. 293-307). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-024-1201-7_11
Zdenek, J., Zeman, S., Suceska, M., Vávra, P., Dudek, K., & Rajic, M. (2001). 1,3,3-trinitroazetidine (TNAZ). Part I. Syntheses and properties. Journal of Energetic Materials, 19(2), 219-239. https://doi.org/10.1080/07370650108216127
Axenrod, T., Watnick, C., Yazdekhasti, H., & Dave, P. R. (1993). Synthesis of 1,3,3- trinitroazetidine. Tetrahedron Letters, 34(42), 6677-6680. https://doi.org/10.1016/S0040-4039(00)61673-8
Ducan, S.W., & Mathew, D.C. (2000). Evaluation of 1,3,3-trinitroazetidine (TNAZ) – A high performance melt-castable explosive, DSTO Aeronautical and Maritime Research Laboratory, P.O. Box 4331, Melborne-Victoria 3001, Australia AR-011-500, July 2000 and ibid, TNAZ based melt-cast explosives: Technology review and ARML Research Directions, DSTO-TR-0702, Aeronautical and Maritime Research Laboratory (AMRL)- DSTO, Fishermans Bed, 1998.
McKenney, R.L., Jr., Floyd, T.G., Stevens, W.E., Archibald, T.G., Marchand, A.P., Sharma, G.V.M., & Bott, S.G. (1998). Synthesis and thermal properties of 1,3-dinitro-3-(1′,3′-dinitroazetidin-3′-yl) azetidine (TNDAZ) and its admixtures with 1,3,3- trinitroazetidine (TNAZ). J. Energ. Mater., 16, 199-235. https://doi.org/10.1080/07370659808217513
Hiskey, A.M., Johnson, M.C., & Chavez, E.D. (1999). Preparation of 1-substituted-3,3- dinitroazetidines. J. Energ. Mater., 17, 233-252. https://doi.org/10.1080/07370659908216106
Pagoria, P.F., Lee, G.S., Mitchell, R.A., & Schmidt, R.D. (2002). A review of energetic materials synthesis. Thermochim. Acta., 384, 187-204. https://doi.org/10.1016/S0040-6031(01)00805-X
Jadhav, H.S., Talawar, M.B., Dhavale, D.D., Asthana, S.N., & Krishnamurthy, V.V. (2006). Alternate method to synthesis of 1,3,3-trinitroazetedine (TNAZ): Next generation melt castable high energy material. Indian J. Chem. Technol., 13, 41-46. http://nopr.niscair.res.in/handle/123456789/8455
Doali, J.O., Fifer, R.A., Kruzezynski, D.I., & Nelson, B.J. (1989). The mobile combustion diagnostic fixture and its application to the study of propellant combustion Part-I. Investigation of the low pressure combustion of LOVA XM-39 Propellant, Technical report No. BRLMR-3787/5, US Ballistic Research Laboratory, Maryland, 1989.
Wilcox, C.F., Zhang, Y.-X., & Bauer, S.H. (2000). The thermo chemistry of TNAZ (1,3,3-trinitroazetidine) and related species: models for calculating heats of formation. Journal of Molecular Structure: THEOCHEM., 528(1-3), 95-109. https://doi.org/10.1016/S0166-1280(99)00475-3
Jizhen, L., Xuezhong, F., Xiping, F., Fengqi, Z., & Rongzu, H. (2006). Compatibility study of 1,3,3-trinitroazetidine with some energetic components and inert materials. Journal of Thermal Analysis and Calorimetry, 85(3), 779-784. https://doi.org/10.1007/s10973-005-7370-8
Iyer, S., Sarah, Y., Yoyee, M., Perz, R., Alster, J., & Stoc, D. (1992). III, TNAZ based composition C-4 development, 11th Annual Working Group, Institute on Synthesis of High Density Materials (Proc.), Kiamesha Lakes, 1992.
Oftadeh, M., Hamadanian, M., Radhoosh, M., & Keshavarz, M.H. (2011). DFT molecular orbital calculations of initial step in decomposition pathways of TNAZ and some of its derivatives with –F, –CN and –OCH3 groups. Computational and Theoretical Chemistry, 964, 262-268. https://doi.org/10.1016/j.comptc.2011.01.007
Türker, L., & Varis, S. (2012). Desensitization of TNAZ via molecular structure modification and explosive properties – A DFT study. Acta Chim. Slov., 59, 749-759.
Wu, J., Huang, Y., Yang, L., Geng, D., Wang, F., Wang, H., & Chen, L. (2018). Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine. Chem. Phys. Chem., 19(20), 2683-2695. https://doi.org/10.1002/cphc.201800550
Türker, L. (2021). Some ions of TNAZ - A DFT Study. Earthline Journal of Chemical Sciences, 6(2), 215-228. https://doi.org/10.34198/ejcs.6221.215228
Türker, L. (2020). A DFT treatment of some aluminized 1,3,3-trinitroazetidine (TNAZ) systems - A deeper look. Earthline Journal of Chemical Sciences, 3(2), 121-140. https://doi.org/10.34198/ejcs.3220.121140
Türker, L. (2021). Effect of selenium on TNAZ molecule - A DFT treatment. Earthline Journal of Chemical Sciences, 6(1), 119-135. https://doi.org/10.34198/ejcs.6121.11913
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Türker, L. (2003). An ab initio treatment on some isomeric structures of a small pseudocyclacene. Journal of Molecular Structure (THEOCHEM)., 637 (1-3), 109-113. https://doi.org/10.1016/S0166-1280(03)00473-1
Türker, L. (1999). PM3 treatment of monoazacyclacenes. Journal of Molecular Structure: THEOCHEM., 492(1-3), 159-163. https://doi.org/10.1016/S0166-1280(99)00157-8
Türker, L. (1994). Cryptoannulenic behavior of cyclacenes. Polycyclic Aromatic Compounds, 4(3), 191-197. https://doi.org/10.1080/10406639408014703
Türker, L., & Gümüş, S. (2004). Cyclacenes. Journal of Molecular Structure: THEOCHEM., 685(1-3) , 1-33. https://doi.org/10.1016/j.theochem.2004.04.021
Dewar, J.M.S. (1969). The molecular orbital theory of organic chemistry. New York: McGraw-Hill.
Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry. New York: Plenum/Rosseta.
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326
This work is licensed under a Creative Commons Attribution 4.0 International License.