Some Tautomers of Amrinone and their Interaction with Calcium Cation - DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: amrinone, inamrinone, inocor, tautomers, DFT


Amrinone, is a pyridine phosphodiesterase 3 inhibitor. It is prescribed to patients suffering from congestive heart failure. In the present study, amrinone and it tautomers have been studied computationally within the limitations of the density functional theory and the basis set employed (B3LYP/6-31++G(d,p)). The calculations have also been extended to interaction of those tautomers with calcium cation. All the tautomers and their composites with the calcium cation are electronically and structurally stable. Some quantum chemical and spectral properties of those systems have been obtained and discussed.


Hamada, Y., Kawachi, K., Yamamoto, T., Nakata, T., Kashu, Y., Sato, M., & Watanabe, Y. (1999). Effects of single administration of a phosphodiesterase III inhibitor during cardiopulmonary bypass: comparison of milrinone and amrinone. Japanese Circulation Journal, 63(8), 605-9.

Klein, N.A., Siskind, S.J., Frishman, W.H., Sonnelblick, E.H., & LeJemtel, T.H. (1981). Hemodynamic comparison of intravenous amrinone and dobutamine in patients with chronic congestive heart failure. American Journal of Cardiology, 48(1), 170-175.

Xiong, W., Ferrier, G.R., & Howlett, S.E. (2004). Diminished inotropic response to amrinone in ventricular myocytes from myopathic hamsters is linked to depression of high-gain Ca2+-induced Ca2+ release. The Journal of Pharmacology and Experimental Therapeutics, 310(2), 761-773.

Levy, J.H., Ramsay, J., & Bailey, J.M. (1990). Pharmacokinetics and pharmacodynamics of phosphodiesterase-III inhibitors. Journal of Cardiothoracic Anesthesia, 4, 7-11.

Packer, M., Medina, N., & Yushak, M. (1984). Hemodynamic and clinical limitations of long-term inotropic therapy with amrinone in patients with severe chronic heart failure. Circulation, 70(6), 1038-1047.

Akcan, A., Kucuk, C., Ok, E., Canoz, O., Muhtaroglu, S., Yilmaz, N., & Yilmaz, Z. (2006). The effect of amrinone on liver regeneration in experimental hepatic resection model 1. Journal of Surgical Research, 130(1), 66-72.

Chen, J., Zhao, H., Farajtabar, A., Zhu, P., Jouyban, A., & Acree, W.E. (2022). Equilibrium solubility of amrinone in aqueous co-solvent solutions reconsidered: Quantitative molecular surface, inter/intra-molecular interactions and solvation thermodynamics analysis. Journal of Molecular Liquids, 355, 118995.

Miller, R.P., Palomo, A.R., Brandon, B.S., Hartley, C.J., & Quinones, M.A. (1981). Combined vasodilator and inotropic therapy of heart failure: Experimental and clinical concepts. Am. Heart J., 102, 500-508.

Taylor, S.H., Silke, B., & Nelson, G.I.C. (1982). Principles of treatment of left ventricular failure. Eur. Heart J., 3, 19, Suppl D:19-43.

Ward, A., Brogden, R.N., Heel, R.C., Speight, T.M., & Avery, G.S. (1983). A preliminary review of its pharmacological properties and therapeutic use. Drugs, 26, 468-502.

Suzuki, H. (1967). Electronic absorption spectra and geometry of organic molecules. New York: Academic Press.

Lambert, J.B., Shurvell, H.F., Verbit, L., Cooks, R.G., & Stout, G.H. (1976). Organic structural analysis. New York: MacMillan.

Bhattacharjee, A.K. (1990). Theoretical conformational study of the molecular structures of some bipyridine cardiotonics. Proc. Indian Acad. Sci. (Chem. Sci.), 102, 159-163.

Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. Method. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.

Gaussian 03 (2004). Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J. J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D. K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT.

Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218.

Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136.

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796.

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118.

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338.

Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888.

Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem. Soc. Rev., 44(18), 6597-6615.

Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.

Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288.

Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914.

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318.

How to Cite
Türker, L. (2022). Some Tautomers of Amrinone and their Interaction with Calcium Cation - DFT Treatment. Earthline Journal of Chemical Sciences, 9(2), 209-226.