Some Tautomers of Amrinone and their Interaction with Calcium Cation - DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: amrinone, inamrinone, inocor, tautomers, DFT

Abstract

Amrinone, is a pyridine phosphodiesterase 3 inhibitor. It is prescribed to patients suffering from congestive heart failure. In the present study, amrinone and it tautomers have been studied computationally within the limitations of the density functional theory and the basis set employed (B3LYP/6-31++G(d,p)). The calculations have also been extended to interaction of those tautomers with calcium cation. All the tautomers and their composites with the calcium cation are electronically and structurally stable. Some quantum chemical and spectral properties of those systems have been obtained and discussed.

References

Hamada, Y., Kawachi, K., Yamamoto, T., Nakata, T., Kashu, Y., Sato, M., & Watanabe, Y. (1999). Effects of single administration of a phosphodiesterase III inhibitor during cardiopulmonary bypass: comparison of milrinone and amrinone. Japanese Circulation Journal, 63(8), 605-9. https://doi.org/10.1253/jcj.63.605

Klein, N.A., Siskind, S.J., Frishman, W.H., Sonnelblick, E.H., & LeJemtel, T.H. (1981). Hemodynamic comparison of intravenous amrinone and dobutamine in patients with chronic congestive heart failure. American Journal of Cardiology, 48(1), 170-175. https://doi.org/10.1016/0002-9149(81)90587-7

Xiong, W., Ferrier, G.R., & Howlett, S.E. (2004). Diminished inotropic response to amrinone in ventricular myocytes from myopathic hamsters is linked to depression of high-gain Ca2+-induced Ca2+ release. The Journal of Pharmacology and Experimental Therapeutics, 310(2), 761-773. https://doi.org/10.1124/jpet.103.064873

Levy, J.H., Ramsay, J., & Bailey, J.M. (1990). Pharmacokinetics and pharmacodynamics of phosphodiesterase-III inhibitors. Journal of Cardiothoracic Anesthesia, 4, 7-11. https://doi.org/10.1016/0888-6296(90)90226-6

Packer, M., Medina, N., & Yushak, M. (1984). Hemodynamic and clinical limitations of long-term inotropic therapy with amrinone in patients with severe chronic heart failure. Circulation, 70(6), 1038-1047. https://doi.org/10.1161/01.cir.70.6.1038

Akcan, A., Kucuk, C., Ok, E., Canoz, O., Muhtaroglu, S., Yilmaz, N., & Yilmaz, Z. (2006). The effect of amrinone on liver regeneration in experimental hepatic resection model 1. Journal of Surgical Research, 130(1), 66-72. https://doi.org/10.1016/j.jss.2005.07.020

Chen, J., Zhao, H., Farajtabar, A., Zhu, P., Jouyban, A., & Acree, W.E. (2022). Equilibrium solubility of amrinone in aqueous co-solvent solutions reconsidered: Quantitative molecular surface, inter/intra-molecular interactions and solvation thermodynamics analysis. Journal of Molecular Liquids, 355, 118995. https://doi.org/10.1016/j.molliq.2022.118995

Miller, R.P., Palomo, A.R., Brandon, B.S., Hartley, C.J., & Quinones, M.A. (1981). Combined vasodilator and inotropic therapy of heart failure: Experimental and clinical concepts. Am. Heart J., 102, 500-508. https://doi.org/10.1016/0002-8703(81)90738-9

Taylor, S.H., Silke, B., & Nelson, G.I.C. (1982). Principles of treatment of left ventricular failure. Eur. Heart J., 3, 19, Suppl D:19-43.

Ward, A., Brogden, R.N., Heel, R.C., Speight, T.M., & Avery, G.S. (1983). A preliminary review of its pharmacological properties and therapeutic use. Drugs, 26, 468-502. https://doi.org/10.2165/00003495-198326060-00002.

Suzuki, H. (1967). Electronic absorption spectra and geometry of organic molecules. New York: Academic Press.

Lambert, J.B., Shurvell, H.F., Verbit, L., Cooks, R.G., & Stout, G.H. (1976). Organic structural analysis. New York: MacMillan.

Bhattacharjee, A.K. (1990). Theoretical conformational study of the molecular structures of some bipyridine cardiotonics. Proc. Indian Acad. Sci. (Chem. Sci.), 102, 159-163. https://doi.org/10.1007/bf02860153

Reutov, O. (1970). Theoretical principles of organic chemistry. Moscow: Mir Pub.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/physrev.140.a1133

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/physreva.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/physrevb.37.785

SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.

Gaussian 03 (2004). Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J. J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D. K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT.

Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209

Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136. https://doi.org/10.1021/ed074p132

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796. https://doi.org/10.1016/s0040-4020(99)00979-5

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s

Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., & Schleyer, P. von R. (2005). Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev., 105(10), 3842-3888. https://doi.org/10.1021/cr030088

Gershoni-Poranne, R., & Stanger, A. (2015). Magnetic criteria of aromaticity. Chem. Soc. Rev., 44(18), 6597-6615. https://doi.org/10.1039/c5cs00114e

Dickens, T.K., & Mallion, R.B. (2016). Topological ring-currents in conjugated systems. MATCH Commun. Math. Comput. Chem., 76, 297-356.

Stanger, A. (2010). Obtaining relative induced ring currents quantitatively from NICS. J. Org. Chem., 75(7), 2281-2288. https://doi.org/10.1021/jo1000753

Monajjemi, M., & Mohammadian, N.T. (2015). S-NICS: An aromaticity criterion for nano molecules. J. Comput. Theor. Nanosci., 12(11), 4895-4914. https://doi.org/10.1166/jctn.2015.4458

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d

Published
2022-12-07
How to Cite
Türker, L. (2022). Some Tautomers of Amrinone and their Interaction with Calcium Cation - DFT Treatment. Earthline Journal of Chemical Sciences, 9(2), 209-226. https://doi.org/10.34198/ejcs.9223.209226
Section
Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 10 > >>