Monomethoxy Isomers of Psoralen - DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: psoralen, psoralene, bergapten, xanthotoxin, NICS, DFT


The present study considers psoralen isomers having a methoxy substituent at different positions of the psoralen backbone. Density functional approach has been adopted at the level of B3LYP/6-311++G(d,p) to obtain various geometrical, physicochemical, spectral and quantum chemical properties of the isomers of concern including bergapten and xanthotoxin. Also local aromaticities of the benzenoid and furanoid rings have been obtained by calculating the nucleolus independent chemical shift values.


Mirzaei, S.A., Dehkordi, N.G., Ghamghami, M., Amiri, A.H., Abdolahinia, E.D., & Elahian, F. (2017). ABC-transporter blockage mediated by xanthotoxin and bergapten is the major pathway for chemosensitization of multidrug-resistant cancer cells. Toxicology and Applied Pharmacology, 337, 22-29.

Diawara, M.M., & Kulkosky, P.J. (2003). Reproductive toxicity of the psoralens. Pediatric Pathology & Molecular Medicine, 22(3), 247-258.

Hearst, J.E. (1989). Photochemistry of the psoralens. Chem. Res. Toxicol., 2(2), 69-75.

Hearst, J., Isaacs, S.T., Kanne, D., Rapoport, H., & Straub, K. (1984). The reaction of the psoralens with deoxyribonucleic acid. Quarterly Reviews of Biophysics, 17(1), 1-44.

Kanne, D., Straub, K., Rapoport, H., & Hearst, J.E. (1982). The psoralen-DNA photoreaction. Characterization of the monoaddition products from 8-methoxypsoralen and 4,5',8-trimethylpsoralen. Biochemistry, 21(5), 861-871.

Fitzpatrick, T.B., Arndt, K.A., El Mofty, A.M., & Pathak, M.A. (1966). Hydroquinone and psoralens in the therapy of hypermelanosis and vitiligo. Arch Dermatol., 93(5), 589-600.

Hanson, C.V. (1992). Photochemical inactivation of viruses with psoralens: an overview. Blood Cells, 18(1), 7-25. PMID: 1617194

Marumoto, S., & Miyazawa, M. (2010). Biotransformation of bergapten and xanthotoxin by Glomerella cingulata. J. Agric. Food Chem., 58(13), 7777-7781.

Schimmer, O. (1981). Comparison of photomutagenic activities of 5-mop (bergapten) and 8-mop (xanthotoxin) in chlamydomonas reinhardii (ger). Mutation Research, 89(4), 283-296.

Tatchen, J., & Marian, C.M. (2006). Vibronic absorption, fluorescence, and phosphorescence spectra of psoralen: a quantum chemical investigation. Phys. Chem. Chem. Phys., 8(18), 2133-2144.

Wood, P.D., Mnyusiwalla, A., Chen, L., & Johnston, L.J., (2000). Reactions of psoralen radical cations with biological substrates. Photochemistry and Photobiology, 72(2) 155-162.

Serrano-Perez, J.J., Merchán, M., & Serrano-Andrés, L. (2007). Quantum chemical study on the population of the lowest triplet state of psoralen. Chemical Physics Letters, 434(1-3), 107-110.

Zhou, Y. Peng, J., Shen, W., & Li, X. (2020). Psoralen as an interstrand DNA crosslinker in the selection of DNA-encoded dynamic chemical library. Biochemical and Biophysical Research Communications, 533(2), 215-222.

Gao, W., Cao, P., Li, B., Zhao, L., Sun, W., & Zhou, W. (2022). Unraveling the role of chemistry and topology of MOFs in psoralen adsorption. Ind. Eng. Chem. Res., 61(20), 7172-7182.

Tatchen, J., Gilka, N., & Marian, C.M. (2007). Intersystem crossing driven by vibronic spin-orbit coupling: a case study on psoralen. Phys. Chem. Chem. Phys., 9(38), 5209-5221.

Scott, B.R., Pathak, M.A., & Mohn, G.R. (1976). Molecular and genetic basis of furocoumarin reactions. Mutat Res. 39(1), 29-74.

Serrano-Pérez, J.J., Serrano-Andrés, L., & Merchán, M. (2006). A theoretical insight into the photophysics of psoralen. J. Chem. Phys., 124, 124502.

Koval'skaya, N.E., & Sokolova, I.V. (2002). The nature of electronically excited states and photoprocesses in psoralen molecules and their complexes. High Energy Chemistry, 36, 193-196.

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods II. Application. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138.

Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.

Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J. J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D. K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

Del Río, J.A., Díaz, L., García-Bernal, D., Blanquer, M., Ortuño, A., Correal, E., Moraleda, J.M. (2014). Furanocoumarins: Biomolecules of Therapeutic Interest, Studies in Natural Products Chemistry, 43, 145-195.

Ghose, A.K., Pritchett, A., & Crippen, G.M. (1988). Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: Modeling hydrophobic interactions. J. Computational Chemistry, 9(1), 80-90.

Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218.

Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136.

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796.

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118.

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338.

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318.

How to Cite
Türker, L. (2022). Monomethoxy Isomers of Psoralen - DFT Treatment. Earthline Journal of Chemical Sciences, 8(2), 175-192.