Monomethoxy Isomers of Psoralen - DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: psoralen, psoralene, bergapten, xanthotoxin, NICS, DFT

Abstract

The present study considers psoralen isomers having a methoxy substituent at different positions of the psoralen backbone. Density functional approach has been adopted at the level of B3LYP/6-311++G(d,p) to obtain various geometrical, physicochemical, spectral and quantum chemical properties of the isomers of concern including bergapten and xanthotoxin. Also local aromaticities of the benzenoid and furanoid rings have been obtained by calculating the nucleolus independent chemical shift values.

References

Mirzaei, S.A., Dehkordi, N.G., Ghamghami, M., Amiri, A.H., Abdolahinia, E.D., & Elahian, F. (2017). ABC-transporter blockage mediated by xanthotoxin and bergapten is the major pathway for chemosensitization of multidrug-resistant cancer cells. Toxicology and Applied Pharmacology, 337, 22-29. https://doi.org/10.1016/j.taap.2017.10.018

Diawara, M.M., & Kulkosky, P.J. (2003). Reproductive toxicity of the psoralens. Pediatric Pathology & Molecular Medicine, 22(3), 247-258. https://doi.org/10.1080/pdp.22.3.247.258

Hearst, J.E. (1989). Photochemistry of the psoralens. Chem. Res. Toxicol., 2(2), 69-75. https://doi.org/10.1021/tx00008a001

Hearst, J., Isaacs, S.T., Kanne, D., Rapoport, H., & Straub, K. (1984). The reaction of the psoralens with deoxyribonucleic acid. Quarterly Reviews of Biophysics, 17(1), 1-44. https://doi.org/10.1017/S0033583500005242

Kanne, D., Straub, K., Rapoport, H., & Hearst, J.E. (1982). The psoralen-DNA photoreaction. Characterization of the monoaddition products from 8-methoxypsoralen and 4,5',8-trimethylpsoralen. Biochemistry, 21(5), 861-871. https://doi.org/10.1021/bi00534a008

Fitzpatrick, T.B., Arndt, K.A., El Mofty, A.M., & Pathak, M.A. (1966). Hydroquinone and psoralens in the therapy of hypermelanosis and vitiligo. Arch Dermatol., 93(5), 589-600. https://doi.org/10.1001/archderm.1966.01600230093025

Hanson, C.V. (1992). Photochemical inactivation of viruses with psoralens: an overview. Blood Cells, 18(1), 7-25. PMID: 1617194

Marumoto, S., & Miyazawa, M. (2010). Biotransformation of bergapten and xanthotoxin by Glomerella cingulata. J. Agric. Food Chem., 58(13), 7777-7781. https://doi.org/10.1021/jf101064v

Schimmer, O. (1981). Comparison of photomutagenic activities of 5-mop (bergapten) and 8-mop (xanthotoxin) in chlamydomonas reinhardii (ger). Mutation Research, 89(4), 283-296. https://doi.org/10.1016/0165-1218(81)90109-9

Tatchen, J., & Marian, C.M. (2006). Vibronic absorption, fluorescence, and phosphorescence spectra of psoralen: a quantum chemical investigation. Phys. Chem. Chem. Phys., 8(18), 2133-2144. https://doi.org/10.1039/B518436C

Wood, P.D., Mnyusiwalla, A., Chen, L., & Johnston, L.J., (2000). Reactions of psoralen radical cations with biological substrates. Photochemistry and Photobiology, 72(2) 155-162. https://doi.org/10.1562/0031-8655(2000)0720155ROPRCW2.0.CO2

Serrano-Perez, J.J., Merchán, M., & Serrano-Andrés, L. (2007). Quantum chemical study on the population of the lowest triplet state of psoralen. Chemical Physics Letters, 434(1-3), 107-110. https://doi.org/10.1016/j.cplett.2006.11.086

Zhou, Y. Peng, J., Shen, W., & Li, X. (2020). Psoralen as an interstrand DNA crosslinker in the selection of DNA-encoded dynamic chemical library. Biochemical and Biophysical Research Communications, 533(2), 215-222. https://doi.org/10.1016/j.bbrc.2020.04.033

Gao, W., Cao, P., Li, B., Zhao, L., Sun, W., & Zhou, W. (2022). Unraveling the role of chemistry and topology of MOFs in psoralen adsorption. Ind. Eng. Chem. Res., 61(20), 7172-7182. https://doi.org/10.1021/acs.iecr.1c04121

Tatchen, J., Gilka, N., & Marian, C.M. (2007). Intersystem crossing driven by vibronic spin-orbit coupling: a case study on psoralen. Phys. Chem. Chem. Phys., 9(38), 5209-5221. https://doi.org/10.1039/B706410A

Scott, B.R., Pathak, M.A., & Mohn, G.R. (1976). Molecular and genetic basis of furocoumarin reactions. Mutat Res. 39(1), 29-74. https://doi.org/10.1016/0165-1110(76)90012-9

Serrano-Pérez, J.J., Serrano-Andrés, L., & Merchán, M. (2006). A theoretical insight into the photophysics of psoralen. J. Chem. Phys., 124, 124502. https://doi.org/10.1063/1.2178794

Koval'skaya, N.E., & Sokolova, I.V. (2002). The nature of electronically excited states and photoprocesses in psoralen molecules and their complexes. High Energy Chemistry, 36, 193-196. https://doi.org/10.1023/A:1015333119535

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semiempirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.

Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J. J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D. K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

Del Río, J.A., Díaz, L., García-Bernal, D., Blanquer, M., Ortuño, A., Correal, E., Moraleda, J.M. (2014). Furanocoumarins: Biomolecules of Therapeutic Interest, Studies in Natural Products Chemistry, 43, 145-195. https://doi.org/10.1016/B978-0-444-63430-6.00005-9

Ghose, A.K., Pritchett, A., & Crippen, G.M. (1988). Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: Modeling hydrophobic interactions. J. Computational Chemistry, 9(1), 80-90. https://doi.org/10.1002/jcc.540090111

Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects. New York: Wiley.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209

Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136. https://doi.org/10.1021/ed074p132

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796. https://doi.org/10.1016/S0040-4020(99)00979-5

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d

Published
2022-07-15
How to Cite
Türker, L. (2022). Monomethoxy Isomers of Psoralen - DFT Treatment. Earthline Journal of Chemical Sciences, 8(2), 175-192. https://doi.org/10.34198/ejcs.8222.175192
Section
Articles