Mononitro-monoperchlorylbenzenes - A DFT Treatment

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: nitroperchlorybenzenes, perchlorylbenzene, explosive, aromaticity, NICS


Perchloryl derivatives, especially aromatic ones have some explosive character and decompose explosively when they are initiated. In the present study, ortho, meta and para nitro isomers of perchlorylbenzene have been considered within the framework of density functional theory at the level of B3LYP/6-311++G(d,p). The results have indicated that they are electronically stable such that the para isomer is more stable than the others whereas the ortho isomer is the least stable of all. Various quantum chemical properties of these isomers are harvested and discussed. The calculated UV-VIS spectra of the isomers have been obtained and the impact sensitivity order is estimated as meta < para < ortho. Also nucleus independent chemical shifts values for the isomers are calculated which yield the aromaticity order of ortho meta > para.


Burton, H., & Praill, P.F.G. (1955). Perchloric acid and some organic perchlorates. Analyst, 80, 4-15.

Inman, C.B., Oesterling, R.Ε., & Tyszkowsky, E.A. (1958). Reactions of perchloryl fluoride with organic compounds. I. Perchlorylation of aromatic compounds. J. Amer. Chem. Soc., 80(19), 5286-5288.

Scott, F.L., & Oesterling, R.E. (1960). Production of benzyne intermediates from perchloryl aromatic compounds. J. Amer. Chem. Soc., 82(19), 5247-5249.

Scott, F.L., & Oesterling, R.E. (1960). Communication-Hydrogenolysis of perchloryl aromatic compounds. J. Org. Chem., 25(9), 1688-1689.

Gardner, D.M., Oesterling, R.E., & Scott. F.L. (1963). The synthesis and oxidation of certain perchlorylbenzenes. J. Org. Chem., 28(10), 2650-2652.

Lunelli, B. (1976). Perchlorylation of benzene and synthesis of perchlorylbenzene-d5. Ind. Eng. Chem. Prod. Res. Dev., 15(4), 278-282.

Krivun, G.N.S.V., Dulenko, V.I., & Zhdanov, Yu.A. (1965). Perchloric acid and its compounds in organic synthesis. 34(2) Russian Chemical Reviews, 34(2) 88-104.

Ledgard, J. (2007). The preparatory manual of explosives (3rd ed.). Jared Ledgard.

Mihre, P.C. (1960). Influence of steric hindrance on the isotope effect in aromatic substitution. Acta Chem. Scand., 14, 219- 221.

de la Mare, P.B.D., & Maxwell, J.L. (1962). The kinetics and mechanisms of aromatic halogen substitution. Part XV. Reagents involved in bromination by hypobromous acid in aqueous acetic acid. Chem. and Ind., 553, 4829-4835.

de la Mare, P.B.D., & Hilton, I.C. (1962). The kinetics and mechanisms of aromatic halogen substitution. Part XIII. Bromination by hypobromous acid in concentrated mineral acids. J. Chem. Soc., 997-1005.

Fischer, A., Packer, J., & Vaughan, J. (1962). The acid-catalyzed bromination of substituted benzyl phenyl ketones. J. Chem. Soc., 3318-3321.

Kuhn, S.J., & Olah, G.J. (1961). Aromatic substitution. VII.1 Friedel-Crafts type nitration of aromatics. J. Amer. Chem. Soc., 83(22), 4564-4571.

Olah, G.A., & Kuhn, S.J. (1962). Aromatic substitution XII. Steric effects in nitronium salt nitrations of alkylbenzenes and halobenzenes. J. Amer. Chem. Soc., 84(19), 3684- 3687.

Morrison , D.A., & Turney, T.A. (1960). The nitrosation of phenol in aqueous perchloric acid. J. Chem. Soc., 4827-4828.

Challis, B.C., & Ridd, J.H. (1962). Nitrosation, diazotization, and deamination. Part XI. The acid-catalyzed diazotization of the anilinium and related ions in aqueous perchloric acid (up to 3•0M). J. Chem. Soc., 5208-5217.

Larkworthy, L.F. (1959). Nitrosation, diazotization, and deamination. Part VII. The reactivities of some aromatic amines towards dinitrogen trioxide. J. Chem. Soc., 3116- 3122.

Vereshchagin, A.N., Vigalok, I.V., Aleksandrova, L.K., & Petrova, G.G. (1981). Polarity and polarizability of certain perchloryl compounds. Russian Chemical Bulletin, 30(2) 190-193.

Sheremetev, A.B. (2020). Perchlorylamino furazans and their salts: new high-energy- density materials with high sensitivity. Mendeleev Communications, 30(4), 490-493.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. Method. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138.

Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.

Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J. J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D. K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

Dorofeenko, G.N., Krivun, S.V., Dulenko, V.I., & Zhdanov, Yu.A. (1965). Perchloric acid and its compounds in organic synthesis. Russian Chemical Reviews, 34(2), 88-104.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and IM analysis. Arabian Journal of Chemistry, 12(5), 621-632.

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects, New York: Wiley.

Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218.

Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136.

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796.

Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118.

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338.

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318.

How to Cite
Türker, L. (2022). Mononitro-monoperchlorylbenzenes - A DFT Treatment. Earthline Journal of Chemical Sciences, 8(1), 77-95.