Mononitro-monoperchlorylbenzenes - A DFT Treatment
Abstract
Perchloryl derivatives, especially aromatic ones have some explosive character and decompose explosively when they are initiated. In the present study, ortho, meta and para nitro isomers of perchlorylbenzene have been considered within the framework of density functional theory at the level of B3LYP/6-311++G(d,p). The results have indicated that they are electronically stable such that the para isomer is more stable than the others whereas the ortho isomer is the least stable of all. Various quantum chemical properties of these isomers are harvested and discussed. The calculated UV-VIS spectra of the isomers have been obtained and the impact sensitivity order is estimated as meta < para < ortho. Also nucleus independent chemical shifts values for the isomers are calculated which yield the aromaticity order of ortho > meta > para.
References
Burton, H., & Praill, P.F.G. (1955). Perchloric acid and some organic perchlorates. Analyst, 80, 4-15. https://doi.org/10.1039/AN9558000004
Inman, C.B., Oesterling, R.Ε., & Tyszkowsky, E.A. (1958). Reactions of perchloryl fluoride with organic compounds. I. Perchlorylation of aromatic compounds. J. Amer. Chem. Soc., 80(19), 5286-5288. https://doi.org/10.1021/ja01552a069
Scott, F.L., & Oesterling, R.E. (1960). Production of benzyne intermediates from perchloryl aromatic compounds. J. Amer. Chem. Soc., 82(19), 5247-5249. https://doi.org/10.1021/ja01504a061
Scott, F.L., & Oesterling, R.E. (1960). Communication-Hydrogenolysis of perchloryl aromatic compounds. J. Org. Chem., 25(9), 1688-1689. https://doi.org/10.1021/jo01079a620
Gardner, D.M., Oesterling, R.E., & Scott. F.L. (1963). The synthesis and oxidation of certain perchlorylbenzenes. J. Org. Chem., 28(10), 2650-2652. https://doi.org/10.1021/jo01045a040
Lunelli, B. (1976). Perchlorylation of benzene and synthesis of perchlorylbenzene-d5. Ind. Eng. Chem. Prod. Res. Dev., 15(4), 278-282. https://doi.org/10.1021/i360060a011
Krivun, G.N.S.V., Dulenko, V.I., & Zhdanov, Yu.A. (1965). Perchloric acid and its compounds in organic synthesis. 34(2) Russian Chemical Reviews, 34(2) 88-104. https://doi.org/10.1070/RC1965v034n02ABEH001416
Ledgard, J. (2007). The preparatory manual of explosives (3rd ed.). Jared Ledgard.
Mihre, P.C. (1960). Influence of steric hindrance on the isotope effect in aromatic substitution. Acta Chem. Scand., 14, 219- 221. https://doi.org/10.3891/acta.chem.scand.14-0219
de la Mare, P.B.D., & Maxwell, J.L. (1962). The kinetics and mechanisms of aromatic halogen substitution. Part XV. Reagents involved in bromination by hypobromous acid in aqueous acetic acid. Chem. and Ind., 553, 4829-4835. https://doi.org/10.1039/JR9620004829
de la Mare, P.B.D., & Hilton, I.C. (1962). The kinetics and mechanisms of aromatic halogen substitution. Part XIII. Bromination by hypobromous acid in concentrated mineral acids. J. Chem. Soc., 997-1005. https://doi.org/10.1039/JR9620000997
Fischer, A., Packer, J., & Vaughan, J. (1962). The acid-catalyzed bromination of substituted benzyl phenyl ketones. J. Chem. Soc., 3318-3321. https://doi.org/10.1039/JR9620003318
Kuhn, S.J., & Olah, G.J. (1961). Aromatic substitution. VII.1 Friedel-Crafts type nitration of aromatics. J. Amer. Chem. Soc., 83(22), 4564-4571. https://doi.org/10.1021/ja01483a016
Olah, G.A., & Kuhn, S.J. (1962). Aromatic substitution XII. Steric effects in nitronium salt nitrations of alkylbenzenes and halobenzenes. J. Amer. Chem. Soc., 84(19), 3684- 3687. https://doi.org/10.1021/ja00878a018
Morrison , D.A., & Turney, T.A. (1960). The nitrosation of phenol in aqueous perchloric acid. J. Chem. Soc., 4827-4828. https://doi.org/10.1039/JR9600004827
Challis, B.C., & Ridd, J.H. (1962). Nitrosation, diazotization, and deamination. Part XI. The acid-catalyzed diazotization of the anilinium and related ions in aqueous perchloric acid (up to 3•0M). J. Chem. Soc., 5208-5217. https://doi.org/10.1039/JR9620005208
Larkworthy, L.F. (1959). Nitrosation, diazotization, and deamination. Part VII. The reactivities of some aromatic amines towards dinitrogen trioxide. J. Chem. Soc., 3116- 3122. https://doi.org/10.1039/JR9590003116
Vereshchagin, A.N., Vigalok, I.V., Aleksandrova, L.K., & Petrova, G.G. (1981). Polarity and polarizability of certain perchloryl compounds. Russian Chemical Bulletin, 30(2) 190-193. https://doi.org/10.1007/BF00953561
Sheremetev, A.B. (2020). Perchlorylamino furazans and their salts: new high-energy- density materials with high sensitivity. Mendeleev Communications, 30(4), 490-493. https://doi.org/10.1016/j.mencom.2020.07.028
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. Method. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Fletcher, P. (1990). Practical methods of optimization. New York: Wiley.
Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J. Phys. Rev., 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Cramer, C.J. (2004). Essentials of computational chemistry. Chichester, West Sussex: Wiley.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc., Irvine CA, USA.
Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J. J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D. K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.
Dorofeenko, G.N., Krivun, S.V., Dulenko, V.I., & Zhdanov, Yu.A. (1965). Perchloric acid and its compounds in organic synthesis. Russian Chemical Reviews, 34(2), 88-104. http://dx.doi.org/10.1070/RC1965v034n02ABEH001416
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and IM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326
Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and antiaromaticity: Electronic and structural aspects, New York: Wiley.
Schleyer, P.R., & Jiao, H. (1996). What is aromaticity?. Pure Appl. Chem., 68, 209-218. https://doi.org/10.1351/pac199668020209
Glukhovtsev, M.N. (1997). Aromaticity today: energetic and structural criteria. J. Chem. Educ., 74, 132-136. https://doi.org/10.1021/ed074p132
Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, G., & Katritzky, A.R. (2000). Aromaticity: a theoretical concept of immense practical importance. Tetrahedron, 56, 1783-1796. https://doi.org/10.1016/S0040-4020(99)00979-5
Schleyer, P.R. (2001). Introduction: aromaticity. Chem. Rev., 101, 1115-1118. https://doi.org/10.1021/cr0103221
Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely?. J. Org. Chem., 67, 1333-1338. https://doi.org/10.1021/jo016255s
Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc., 118, 6317-6318. https://doi.org/10.1021/ja960582d
This work is licensed under a Creative Commons Attribution 4.0 International License.