Comparison of Oxidative Powers of DADP and TATP - A DFT Treatise

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: DADP, diacetone diperoxide, TATP, triacetone triperoxide, peroxide explosives, explosives


Diacetone diperoxide (DADP) and triacetone triperoxide (TATP) are very sensitive organic-peroxide type explosives which are easily synthesized. The present density functional treatment considers oxidative powers of DADP and TATP molecules based on comparison of their interactions with certain group II-metals at the level of B3LYP/6-311++G(d,p). Composite systems of DADP and TATP with Be, Mg and Ca have been considered. Although, in the case of beryllium composites, DADP and TATP and in the magnesium composite of DADP the organic component remains intact, Ca composites of DADP and TATP undergo ring rapture. Certain structural, electronic, quantum chemical and some spectral properties of the composites have been obtained and discussed.


Wolffenstein, R. (1895). Ueber die Einwirkung von Wasserstoffsuperoxyd auf Aceton und Mesityloxyd. Ber. Dtsch. Chem. Ges., 28(2), 2265-2269.

Matyas, R., & Pachman, J. (2010). Study of TATP: Influence of reaction conditions on product composition. Propellants Explos. Pyrotech., 35, 31-37.

Jiang, H., Chu, G., Gong, H., & Qiao, Q. (1999). Tin chloride catalyzed oxidation of acetone with hydrogen peroxide to tetrameric acetone peroxide. J. Chem. Res., 28(4), 288-289.

Bali, M.S., Wallace, L., Day, A.I., & Armitt, D. (2014). Cyclic pentanone peroxide: Sensitiveness and suitability as a model for triacetone triperoxide. Journal of Forensic Sciences, 59, 936 - 942.

Oxley, J., Smith, J.L., Huang, J., & Luo, W. (2009). Destruction of peroxide explosives. Journal of Forensic Sciences, 54(5), 1029-33.

Matyáš, R., Selesovsky, J., & Musil, T. (2012 ). Sensitivity to friction for primary explosives. J. Hazard Mater., 213-214, 236-241.

Matyáš, R., Pachman, J., & Ang, H.-G. (2009). Study of TATP: Spontaneous transformation of TATP to DADP. Propellants Explos. Pyrotech., 34(6), 484-488.

Oxley, C., Smith, J.L., Luo, W., & Brady, J. (2009). Determining the vapor pressures of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propellants Explos. Pyrotech., 34(6), 539-543.

Oxley, J.C., Smith, J.L., Steinkamp, L., & Zhang, G. (2013). Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation: Part 2. Propellants Explos. Pyrotech., 38(6), 841-851.

Oxley, J.C., Smith, J.L., Bowden, P.R., & Rettinger, R.C. (2013). Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) Formation: Part I. Propellants Explos. Pyrotech., 38(2), 244 -254.

Landenberger, K.B., Bolton. O., & Matzger, A.J. (2015). Energetic–energetic cocrystals of diacetone diperoxide (DADP): Dramatic and divergent sensitivity modifications via cocrystallization. J. Am. Chem. Soc., 137, 5074-5079.

Bowden, P.R., Tappan, B.C., Manner, V.W., Preston, D.N., &. Scott, B.L. (2017). Characterization of diacetone diperoxide (DADP). AIP Conference Proceedings, 1793, 040010.

Kahnooji, M., Pandas, H.M., Mirzaei, M., & Peyghan, A.A. (2015). Explosive properties of nanosized diacetone diperoxide and its nitro derivatives: a DFT study. Monatsh Chem., 146(9), 1401-1408.

Türker, L. (2022). Interaction of TATP with some group II metals - A DFT treatment. Earthline Journal of Chemical Sciences, 7(1), 1-16.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220.

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264.

Leach, A.R. (1997). Molecular modeling. Essex: Longman.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138.

Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.

Vosko, S.H., Vilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.

Pearson, R.G. (1997). Chemical hardness. Weinheim: Wiley-VCH.

Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.

Durrant, P. J., & Durrant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.

Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632.

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33.

Matsuoka, M. (1990). Infrared absorbing dyes. New York: Plenum Press.

How to Cite
Türker, L. (2021). Comparison of Oxidative Powers of DADP and TATP - A DFT Treatise. Earthline Journal of Chemical Sciences, 7(1), 67-80.