Comparison of Oxidative Powers of DADP and TATP - A DFT Treatise
Abstract
Diacetone diperoxide (DADP) and triacetone triperoxide (TATP) are very sensitive organic-peroxide type explosives which are easily synthesized. The present density functional treatment considers oxidative powers of DADP and TATP molecules based on comparison of their interactions with certain group II-metals at the level of B3LYP/6-311++G(d,p). Composite systems of DADP and TATP with Be, Mg and Ca have been considered. Although, in the case of beryllium composites, DADP and TATP and in the magnesium composite of DADP the organic component remains intact, Ca composites of DADP and TATP undergo ring rapture. Certain structural, electronic, quantum chemical and some spectral properties of the composites have been obtained and discussed.
References
Wolffenstein, R. (1895). Ueber die Einwirkung von Wasserstoffsuperoxyd auf Aceton und Mesityloxyd. Ber. Dtsch. Chem. Ges., 28(2), 2265-2269. https://doi.org/10.1002/cber.189502802208
Matyas, R., & Pachman, J. (2010). Study of TATP: Influence of reaction conditions on product composition. Propellants Explos. Pyrotech., 35, 31-37. https://doi.org/10.1002/prep.200800044
Jiang, H., Chu, G., Gong, H., & Qiao, Q. (1999). Tin chloride catalyzed oxidation of acetone with hydrogen peroxide to tetrameric acetone peroxide. J. Chem. Res., 28(4), 288-289. https://doi.org/10.1039/a809955c
Bali, M.S., Wallace, L., Day, A.I., & Armitt, D. (2014). Cyclic pentanone peroxide: Sensitiveness and suitability as a model for triacetone triperoxide. Journal of Forensic Sciences, 59, 936 - 942. https://doi.org/10.1111/1556-4029.12439
Oxley, J., Smith, J.L., Huang, J., & Luo, W. (2009). Destruction of peroxide explosives. Journal of Forensic Sciences, 54(5), 1029-33. https://doi.org/10.1111/j.1556-4029.2009.01130.x
Matyáš, R., Selesovsky, J., & Musil, T. (2012 ). Sensitivity to friction for primary explosives. J. Hazard Mater., 213-214, 236-241. https://doi.org/10.1016/j.jhazmat.2012.01.085
Matyáš, R., Pachman, J., & Ang, H.-G. (2009). Study of TATP: Spontaneous transformation of TATP to DADP. Propellants Explos. Pyrotech., 34(6), 484-488. https://doi.org/10.1002/prep.200800043
Oxley, C., Smith, J.L., Luo, W., & Brady, J. (2009). Determining the vapor pressures of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propellants Explos. Pyrotech., 34(6), 539-543. https://doi.org/10.1002/prep.200800073
Oxley, J.C., Smith, J.L., Steinkamp, L., & Zhang, G. (2013). Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) formation: Part 2. Propellants Explos. Pyrotech., 38(6), 841-851. https://doi.org/10.1002/prep.201200215
Oxley, J.C., Smith, J.L., Bowden, P.R., & Rettinger, R.C. (2013). Factors influencing triacetone triperoxide (TATP) and diacetone diperoxide (DADP) Formation: Part I. Propellants Explos. Pyrotech., 38(2), 244 -254. https://doi.org/10.1002/prep.201200116
Landenberger, K.B., Bolton. O., & Matzger, A.J. (2015). Energetic–energetic cocrystals of diacetone diperoxide (DADP): Dramatic and divergent sensitivity modifications via cocrystallization. J. Am. Chem. Soc., 137, 5074-5079. https://doi.org/10.1021/jacs.5b00661
Bowden, P.R., Tappan, B.C., Manner, V.W., Preston, D.N., &. Scott, B.L. (2017). Characterization of diacetone diperoxide (DADP). AIP Conference Proceedings, 1793, 040010. https://doi.org/10.1063/1.4971504
Kahnooji, M., Pandas, H.M., Mirzaei, M., & Peyghan, A.A. (2015). Explosive properties of nanosized diacetone diperoxide and its nitro derivatives: a DFT study. Monatsh Chem., 146(9), 1401-1408. https://doi.org/10.1007/s00706-015-1419-6
Türker, L. (2022). Interaction of TATP with some group II metals - A DFT treatment. Earthline Journal of Chemical Sciences, 7(1), 1-16. https://doi.org/10.34198/ejcs.7122.116
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Vilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Pearson, R.G. (1997). Chemical hardness. Weinheim: Wiley-VCH. https://doi.org/10.1002/3527606173
Fleming, I. (1973). Frontier orbitals and organic reactions. London: Wiley.
Durrant, P. J., & Durrant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.
Anbu, V., Vijayalakshmi, K.A., Karunathan, R., Stephen, A.D., & Nidhin, P.V. (2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326
Matsuoka, M. (1990). Infrared absorbing dyes. New York: Plenum Press.
This work is licensed under a Creative Commons Attribution 4.0 International License.