Effect of Titanium on FOX-7 - A DFT Treatment
Abstract
FOX-7 is a push-pull type conjugated system which attracts attention as an insensitive high energy material. The present study considers its titanium composite within the restrictions of density functional theory at the levels of B3LYP/LANL2DZ and B3LYP/6-311++G(2df,2p). The results indicate that the titanium atom transfers some electron population to the organic component, thus forces one of the N-O bonds to rupture. Various structural, quantum chemical and UV-VIS spectral data are collected and discussed.
References
D.N. Trifonov and V.D. Trifonov, Chemical Elements: How They Were Discovered, Moscow: Mir, 1982.
A. Betekhtin, A Course of Mineralogy, Moscow: Mir,1964.
M.S. Russel, The Chemistry of Fireworks, Cambridge: RSC Pub., 2009.
T.M. Massis, J.W. Fronabarger and W.B. Sanborn, New explosive materials and pyrotechnic formulations with improved safety and sensitivity properties, United States Department of Energy under Contract DE-AC04-94AL85000. 14186c9f607e42b2fb2bb77edaf945a089b3.pdf
A.P. Shaw, R.K. Sadangi, J.C. Poret and C.M. Csernica, Metal-element compounds of titanium, zirconium, and hafnium as pyrotechnic fuels. 7de423ef045f1bd5d36e92331f5b34972e14.pdf
S. Cudziło, W.A. Trzciński, J. Paszula, M. Szala and Z. Chyłek, Effect of titanium and zirconium hydrides on the detonation heat of RDX‐based explosives – A comparison to aluminum, Prop. Explos. Pyrotech. 4(3) (2018), 280-285. https://doi.org/10.1002/prep.201700237
R. Lane, B. Craig and W. Babcock, Materials for blast and penetration resistance, The AMPTIAC Quarterly, Protecting People at Risk (special issue) 6(4) (2003), 39-45. https://p2infohouse.org/ref/34/33102.pdf
D.L. Frost, M. Cairns, S. Goroshin and F. Zhang, Reaction of titanium and zirconium particles an cylindrical explosive charges, AIP Conference Proceedings 955(1) (2007), 781-784. https://doi.org/10.1063/1.2833240
I. Samardzıc, Z. Kozuh and B. Matesa, Structural analysis of three-metal explosion joint: zirconium-titanium-steel, METABK 49(2) (2010), 119-122.
T. Hanawa, Titanium–tissue interface reaction and its control with surface treatment, Front. Bioeng. Biotechnol. 7 (2019), Article 170. https://doi.org/10.3389/fbioe.2019.00170
P.R. Bowden, B.C. Tappan, M.M. Schmitt, R.W. Lebrun, M. Shorty, P.W. Leonard, J.P. Lichthardt, E.G. Francois and L.G. Hill, Synthesis, formulation and performance evaluation of reduced sensitivity explosives, AIP Conference Proceedings 1979 (2018), 100005. https://doi.org/10.1063/1.5044877
N.V. Latypov, J. Bergman, A. Langlet, U. Wellmar and U. Bemm, Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene, Tetrahedron 54(38) (1998), 11525-11536. https://doi.org/10.1016/S0040-4020(98)00673-5
S. Karlsson, H. Ostmark, C. Eldsater, T. Carlsson, H. Bergman, S. Wallin and A. Pettersson, Detonation and sensitivity properties of FOX-7 and formulations containing FOX-7, 12th Int. Symp. Detonation, San Diego, California, August 11-16, 2002.
B. Janzon, H. Bergman, C. Eldsater, C. Lamnevik and H. Ostmark, FOX-7 – A novel, high performance, low vulnerability high explosive for warhead applications, 20th Int. Symp. Ballistics, Orlando, Florida, September 23-27, 2002.
Y.N. Matyushin, G.T. Afanas’ev, V.P. Lebedev, M.N. Mahov and V.I. Pepekin, TATB and FOX-7: thermochemistry, performance, detonability, sensitivity, 34th Int. Annu. Conf. ICT, Karlsruhe, Germany, June 24-27, 2003.
S. Cudziło and W. Kicinski, Synthesis and properties of DADNE (in Polish), Biuletyn WAT 53(2-3) (2004), 183-204.
A.J. Bellamy, N.V. Latypov and P. Goede, Studies on the nitration of new potential precursors for FOX-7, New Trends Res. Energ. Mater., Proc. Semin., 7th, Pardubice, Czech Republic, April 20-22, 2004.
Z. Chyłek, S. Cudziło, J. Błądek and S. Pietrzyk, Optimization of 1,1-diamino-2,2-dinitroethene synthesis (in Polish), Biuletyn WAT 54(5-6) (2005), 19-16.
S. Cudziło, Z. Chyłek and R. Diduszko, Crystallization and characterization of 1,1-diamino-2,2-dinitroethene (DADNE) (in Polish), Biuletyn WAT 54(5-6) (2005), 5-18.
S. Cudziło, Z. Chyłek and R. Diduszko, Crystallization and characterization of 1,1-diamino-2,2-dinitroethene (DADNE), 36th Int. Annu. Conf. ICT, Karlsruhe, Germany, June 28-July 1, 2005.
S. Cudziło and Z. Chyłek, 1,1-Diamino-2,2-dinitroethene (DADNE), a new high energetic and low sensitive explosive (in Polish), Wiadomości Chemiczne 60(11-12) (2006), 763-791.
W.A. Trzciński, S. Cudziło, Z. Chyłek and L. Szymańczyk, Investigation of sensitivity and detonation properties of FOX-7, 37th Int. Annu. Conf. ICT, Karlsruhe, Germany, June 27-30, 2006.
M. Anniyappan, M.B. Talawar, G.M. Gore, S. Venugopalan and B.R. Ganghe, Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) and its salts, J. Hazard. Mater. B137 (2006), 812-819. https://doi.org/10.1016/j.jhazmat.2006.03.034
W.A. Trzciński, S. Cudziło, Z. Chyłek and L. Szymańczyk, Determination of the expansion isentrope for detonation products of FOX-7, 38th Int. Annu. Conf. ICT, Karlsruhe, Germany, June 26-29, 2007.
W.A. Trzciński, S. Cudziło, Z. Chyłek and L. Szymańczyk, Detonation properties of 1,1- diamino-2,2-dinitroethene (DADNE), J. Hazard. Mater. 157 (2008), 605-612. https://doi.org/10.1016/j.jhazmat.2008.01.026
J.J.P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208
J.J.P. Stewart, Optimization of parameters for semi empirical methods II. Application, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209
A.R. Leach, Molecular Modeling, Essex: Longman, 1997.
P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.
W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, J. Phys. Rev. 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.
C.J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.
A. Abkari, I. Chaabane and K. Guidara, DFT (B3LYP/LanL2DZ and B3LYP/6311G+(d,p)) comparative vibrational spectroscopic analysis of organic–inorganic compound bis(4-acetylanilinium) tetrachlorocuprate(II), Physica E: Low-dimensional Systems and Nanostructures 81 (2016), 136-144. https://doi.org/10.1016/j.physe.2016.03.010
A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159
C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.
P.J. Durant and B. Durant, Introduction to Advanced Inorganic Chemistry, London: Longman, 1972.
R.G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem. 27(4) (1988), 734-740. https://doi.org/10.1021/ic00277a030
L.V. Vilkov, V.S. Mastryukov and N.I. Sadova, Determination of the Geometrical Structure of Free Molecules, Moscow: Mir, 1983.
A.V. Tarasov, A.S. Alikhanian, G.A. Kirakosyan and I.V. Arkhangel’skii, Chemical interaction of metallic titanium with a tetrafluoroethylene–vinylidene fluoride copolymer, Inorganic Materials 46(12) (2010), 1308-1312. https://doi.org/10.1134/S0020168510120071
V. Anbu, K.A. Vijayalakshmi, R. Karunathan, A.D. Stephen and P.V. Nidhin, Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis, Arabian Journal of Chemistry 12(5) (2019), 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
N.R. Badders, C. Wei, A.A. Aldeeb, W.J. Rogers and M.S. Mannan, Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors, Journal of Energetic Materials 24 (2006), 17-33. https://doi.org/10.1080/07370650500374326
This work is licensed under a Creative Commons Attribution 4.0 International License.