cis- and trans-2,5,7,9-Tetranitro-2,5,7,9-tetraazabicyclo[4,3,0]nonan-8-one and Some of its Isomers-A DFT Treatise

  • Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eskişehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey
Keywords: K56, nitramines, explosives, density functional, bicyclononanones

Abstract

Some geometrical isomers of tetranitro-tetraazabicyclonanones (the titled compounds) and some of their constitutional isomers are investigated quantum chemically at the level of B3LYP/6-311++G(d,p). The constitutional isomers differ from the title compounds by the position of the carbonyl group. All the structures are nitramines (actually nitramides of organic sense). The constitutional isomers considered are capable of exhibiting proton tautomerism (keto-enol type). The tautomers have also been subjected to density functional treatment at the same level of calculation. For all the structures various electronic, energetic and spectral data have been collected and discussed.

References

R. D. Chapman, R. Quintana, L. C. Baldwin and R. A. Hollins, Cyclic dinitroureas as self-remediating munition charges, Naval Air Warfare Center Weapons Division, SERDP Project WP-1624, 2009. https://doi.org/10.21236/ADA537573

R. D. Chapman, R. Quintana, L. C. Baldwin and R. A. Hollins, Cyclic dinitroureas as self-remediating munition charges, Partners in Environmental Technology Technical Symposium & Workshop (Washington, DC), 2008. https://doi.org/10.21236/ADA537573

J. J. Sabatini and K. D. Oyler, Recent advances in the synthesis of high explosive materials, Crystals 6, 5 (2016), 2-22. https://doi.org/10.3390/cryst6010005

K. Cui, G. Xu, Z. Xu, P. Wang, M. Xue, Z. Meng, J. Li, B. Wang, Z. Ge and G. Qin, Synthesis and characterization of a thermally and hydrolytically stable energetic material based on N‐nitrourea, Propellants, Explos., Pyrotech. 39(5) (2014), 662-669. https://doi.org/10.1002/prep.201300100

J. Boileau, J. M. L. Emeury and J. P. Kehren, Tetranitroglycoluril and method of preparation thereof, US Pat. US4487938A, 1984.

M. Chen, G. Hua and W. Li, Synthesis and properties of 2,4,6,8-tetranitro-2,4,6,8- tetraazabicyclo[3,3,0]octan-3one, Proc. Int. Symposium on Pyrotechnics and Explosives, Beijing: China Academic Pub. 187-189, 1987.

P. F. Pagoria, A. R. Mitchell and E. S. Jessop, Nitroureas II. Synthesis of bicyclic mono‐ and dinitrourea compounds, Propellants, Explos., Pyrotech. 21 (1996), 14-18. https://doi.org/10.1002/prep.19960210104

A. K. Sikder, G. M. Bhokare, D. B. Sarwade and J. P. Agrawal, Synthesis, characterization and thermal behaviour of 2,4,6,8‐tetranitro‐2,4,6,8‐tetraazabicyclo[3.3.1] nonane‐3,7‐dione (TNPDU) and one of its methylene analogues, Propellants, Explos., Pyrotech. 26(2) (2001), 63-68. https://doi.org/10.1002/1521-4087(200104)26:2%3C63::AID-PREP63%3E3.0.CO;2-3

H. R. Graindorge, P. A. Lescop, M. J. Pouet and F. Terrier, in: Nitration: Recent Laboratory and Industrial Developments, ACS Symposium Series, 623, (Eds: L.F. Albright, R.V.C. Carr, R.J. Schmitt), Washington, DC: Am. Chem. Soc., Ch.5 43-50, 1996. https://doi.org/10.1021/bk-1996-0623.ch005

R. J. Butcher, R. Evans and R. Gilardi, 2,5,7-Trinitro-2,5,7,9-tetraazabicyclo[4.3.0]-nonan-8-one, Acta Cryst. E 60(8) (2004), 1376-1378. https://doi.org/10.1107/S1600536804017301

C. George, R. Gilardi and J. L. Flippen‐Anderson, Structure of 7-acetyl-2,5,9-trinitro-2,5,7,9-tetraazabicyclo[4.3.0]nonan-8-one, Acta Cryst. C 48(8) (1992), 1527-1528. https://doi.org/10.1107/S0108270191014956

J. P. Agrawal and R. D. Hodgson, Organic Chemistry of Explosives, Chichester, Sussex: Wiley, 2007. https://doi.org/10.1002/9780470059364

K. Cui, Z. Xu, G. Xu, Z. Meng, W. Liu, X. Shi, Y. Xu, J. Li and Z. Lin, Design and synthesis of hydrolytically stable N‐nitrourea explosives, Propellants, Explos., Pyrotech. 40(6) ( 2015), 908-913. https://doi.org/10.1002/prep.201500092

J. J. P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989), 209-220. https://doi.org/10.1002/jcc.540100208

J. J. P. Stewart, Optimization of parameters for semiempirical methods II. Applications, J. Comput. Chem. 10 (1989), 221-264. https://doi.org/10.1002/jcc.540100209

A. R. Leach, Molecular Modeling, Essex: Longman, 1997.

P. Fletcher, Practical Methods of Optimization, New York: Wiley, 1990.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140 (1965), 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, London: Oxford University Press, 1989.

C. J. Cramer, Essentials of Computational Chemistry, Chichester, West Sussex: Wiley, 2004.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

S. H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980), 1200-1211. https://doi.org/10.1139/p80-159

C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06, Wavefunction Inc., Irvine CA, USA, 2006.

O. Reutov, Theoretical Principles of Organic Chemistry, Moscow: Mir Pub., 1970.

E. V. Anslyn and D. A. Dougherty, Modern Physical Organic Chemistry, Sausalito, California: University Science Books, 2006.

F. J. Ovens, Relationship between impact induced reactivity of trinitroaromatic molecules and their molecular structure, J. Mol. Struct. (THEOCHEM) 121 (1985), 213-220. https://doi.org/10.1016/0166-1280(85)80061-0

Published
2020-05-24
How to Cite
Türker, L. (2020). cis- and trans-2,5,7,9-Tetranitro-2,5,7,9-tetraazabicyclo[4,3,0]nonan-8-one and Some of its Isomers-A DFT Treatise . Earthline Journal of Chemical Sciences, 4(2), 77-88. https://doi.org/10.34198/ejcs.4220.7788
Section
Articles