Coefficient Estimates for Two New Subclasses of Bi-univalent Functions Involving Laguerre Polynomials

  • Elumalai Muthaiyan Department of Mathematics, St. Joseph's Institute of Technology, OMR, Chennai - 600 119, Tamilnadu, India
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
Keywords: analytic functions, univalent functions, bi-univalent functions, Laguerre polynomial

Abstract

In this paper, we introduce two new subclasses of regular and bi-univalent functions using Laguerre polynomials. Then, we define some upper limits for the Taylor Maclaurin coefficients. In addition, the Fekete-Szegö problem for the functions of the new subclasses. Finally, we provide some corollaries for certain values of parameters.

Downloads

Download data is not yet available.

References

Amourah, A., Frasin, B. A., & Abdeljawad, T. (2021). Fekete-Szegö inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials. Journal of Function Spaces, 2021, Article ID 5574673. https://doi.org/10.1155/2021/5574673

Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers. Fibonacci Quarterly, 37, 98-105. https://doi.org/10.1080/00150517.1999.12428864

Brannan, D., & Clunie, J. (1980). Aspects of contemporary complex analysis. Academic Press.

Brannan, D., & Taha, T. S. (1988). On some classes of bi-univalent functions. In Proceedings of the International Conference on Mathematical Analysis and its Applications (pp. 53-60). https://doi.org/10.1016/B978-0-08-031636-9.50012-7

Çağlar, M. (2019). Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. Comptes Rendus de l'Académie Bulgare des Sciences, 72, 1608-1615. https://doi.org/10.7546/CRABS.2019.12.02

Çağlar, M., Orhan, H., & Yağmur, N. (2013). Coefficient bounds for new subclasses of bi-univalent functions. Filomat, 27, 1165-1171. https://doi.org/10.2298/FIL1307165C

Cotîrlă, L.-I., & Wanas, A. K. (2023). Applications of Laguerre polynomials for Bazilevič and $theta$-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions. Symmetry, 15, Article ID 406, 1-8. https://doi.org/10.3390/sym15020406

Duren, P. L. (1983). Univalent functions. Grundlehren der Mathematischen Wissenschaften (Vol. 259). Springer-Verlag.

Elumalai, M. (2024). Bi-univalent functions of complex order defined by Hohlov operator associated with (P,Q)-Lucas polynomial. Sahand Communications in Mathematical Analysis, 21(1), 273-289.

Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24, 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048

Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1

Miller, S. S., & Mocanu, P. T. (2000). Differential subordinations. Monographs and Textbooks in Pure and Applied Mathematics (Vol. 225). Marcel Dekker, Inc. https://doi.org/10.1201/9781482289817

Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009

Toklu, E., Aktas, I., & Sagsöz, F. (2019). On new subclasses of bi-univalent functions defined by generalized Salagean differential operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 776-783. https://doi.org/10.31801/cfsuasmas.475818

Wanas, A. K., & Lupaş, A. A. (2022). Applications of Laguerre polynomials on a new family of bi-prestarlike functions. Symmetry, 14, Article 645, 1-10. https://doi.org/10.3390/sym14040645

Wanas, A. K., & Swamy, S. R. (2023). Applications of the second kind Chebyshev polynomials of bi-starlike and bi-convex $lambda$-pseudo functions associated with Sakaguchi type functions. Earthline Journal of Mathematical Sciences, 13(2), 497-507. https://doi.org/10.34198/ejms.13223.497507

Wanas, A. K., Wanas, E. K., Catas, A., & Abdalla, M. (2024). Applications of (M,N)-Lucas polynomials for a certain family of bi-univalent functions associating $lambda$-pseudo-starlike functions with Sakaguchi type functions. Earthline Journal of Mathematical Sciences, 15(1), 1-10. https://doi.org/10.34198/ejms.15125.001010

Xu, Q. H., Xiao, H. G., & Srivastava, H. M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218(23), 11461-11465. https://doi.org/10.1016/j.amc.2012.05.034

Yilmaz, N., & Aktas, I. (2022). On some new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Afrika Matematika, 33(2), Article 59. https://doi.org/10.1007/s13370-022-00993-y

Published
2024-12-30
How to Cite
Muthaiyan, E., & Wanas, A. K. (2024). Coefficient Estimates for Two New Subclasses of Bi-univalent Functions Involving Laguerre Polynomials. Earthline Journal of Mathematical Sciences, 15(2), 187-199. https://doi.org/10.34198/ejms.15225.187199
Section
Articles

Most read articles by the same author(s)

1 2 3 > >>