Two Families of m-fold Symmetric Bi-univalent Functions Involving a Linear Combination of Bazilevic Starlike and Convex Functions
Abstract
In the present paper, we define two new families $K M_{\Sigma_m}(\lambda, \gamma, \delta ; \alpha)$ and $K M_{\Sigma_m}^*(\lambda, \gamma, \delta ; \beta)$ of holomorphic and m-fold symmetric bi-univalent functions associated with the Bazilevic starlike and convex functions in the open unit disk U. We find upper bounds for the first two Taylor-Maclaurin $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in these families. Further, we point out several special cases for our results.
References
Abd, B. A., & Wanas, A. K. (2024). Coefficient bounds for a new families of m-fold symmetric bi-univalent functions defined by Bazilevic convex functions. Earthline Journal of Mathematical Sciences, 14(1), 105-117. https://doi.org/10.34198/ejms.14124.105117
Aldawish, I., Swamy, S. R., & Frasin, B. A. (2022). A special family of m-fold symmetric bi-univalent functions satisfying subordination condition. Fractal Fractional, 6, 271. https://doi.org/10.3390/fractalfract6050271
Al-Shbeil, I., Wanas, A. K., Saliu, A., & Catas, A. (2022). Applications of beta negative binomial distribution and Laguerre polynomials on Ozaki bi-close-to-convex functions. Axioms, 11, Art. ID 451, 1-7. https://doi.org/10.3390/axioms11090451
Altinkaya, S., & Yalçin, S. (2018). On some subclasses of m-fold symmetric bi-univalent functions. Communications in Faculty of Sciences University of Ankara, Series A1, 67(1), 29-36. https://doi.org/10.1501/Commua1_0000000827
Amourah, A., Alamoush, A., & Al-Kaseasbeh, M. (2021). Gegenbauer polynomials and bi-univalent functions. Palestine Journal of Mathematics, 10(2), 625-632. https://doi.org/10.3390/math10142462
Brannan, D. A., & Taha, T. S. (1986). On some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai Mathematica, 31(2), 70-77.
Bulut, S. (2016). Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turkish Journal of Mathematics, 40, 1386-1397. https://doi.org/10.3906/mat-1511-41
Duren, P. L. (1983). Univalent functions. Grundlehren der Mathematischen Wissenschaften, Band 259. Springer Verlag.
Eker, S. S. (2016). Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turkish Journal of Mathematics, 40, 641-646. https://doi.org/10.3906/mat-1503-58
Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24, 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048
Khan, B., Srivastava, H. M., Tahir, M., Darus, M., Ahmad, Q. Z., & Khan, N. (2021). Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 6, 1024-1039. https://doi.org/10.3934/math.2021061
Koepf, W. (1989). Coefficients of symmetric functions of bounded boundary rotations. Proceedings of the American Mathematical Society, 105, 324-329. https://doi.org/10.1090/S0002-9939-1989-0930244-7
Kumar, T. R. K., Karthikeyan, S., Vijayakumar, S., & Ganapathy, G. (2021). Initial coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions. Advances in Dynamical Systems and Applications, 16(2), 789-800.
Li, X. F., & Wang, A. P. (2012). Two new subclasses of bi-univalent functions. International Mathematical Forum, 7(2), 1495-1504.
Magesh, N., & Yamini, J. (2018). Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. Tbilisi Mathematical Journal, 11(1), 141-157. https://doi.org/10.32513/tbilisi/1524276036
Murugusundaramoorthy, G., Magesh, N., & Prameela, V. (2013). Coefficient bounds for certain subclasses of bi-univalent function. Abstract and Applied Analysis, Art. ID 573017, 1-3. https://doi.org/10.1155/2013/573017
Sakar, F. M., & Aydogan, S. M. (2018). Coefficients bounds for certain subclasses of m-fold symmetric bi-univalent functions defined by convolution. Acta Universitatis Apulensis, 55, 11-21. https://doi.org/10.17114/j.aua.2018.55.02
Sakar, F. M., & Aydogan, S. M. (2019). Bounds on initial coefficients for a certain new subclass of bi-univalent functions by means of Faber polynomial expansions. Mathematics in Computer Science, 13, 441-447. https://doi.org/10.1007/s11786-019-00406-7
Sakar, F. M., & Canbulat, A. (2019). Inequalities on coefficients for certain classes of m-fold symmetric and bi-univalent functions equipped with Faber polynomial. Turkish Journal of Mathematics, 43, 293-300. https://doi.org/10.3906/mat-1808-82
Sakar, F. M., & Tasar, N. (2019). Coefficients bounds for certain subclasses of m-fold symmetric bi-univalent functions. New Trends in Mathematical Sciences, 7(1), 62-70. https://doi.org/10.20852/ntmsci.2019.342
Singh, R. (1973). On Bazilevic functions. Proceedings of the American Mathematical Society, 38(2), 261-271. https://doi.org/10.1090/S0002-9939-1973-0311887-9
Srivastava, H. M., Eker, S. S., & Ali, R. M. (2015). Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat, 29, 1839-1845. https://doi.org/10.2298/FIL1508839S
Srivastava, H. M., Gaboury, S., & Ghanim, F. (2016). Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. Acta Mathematica Scientia 36, 863-871. https://doi.org/10.1016/S0252-9602(16)30045-5
Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
Srivastava, H. M., Sivasubramanian, S., & Sivakumar, R. (2014). Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Mathematical Journal, 7(2), 1-10. https://doi.org/10.2478/tmj-2014-0011
Srivastava, H. M., & Wanas, A. K. (2019). Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59, 493-503.
Srivastava, H. M., Wanas, A. K., & Murugusundaramoorthy, G. (2021). A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surveys in Mathematics and its Applications, 16, 193-205.
Swamy, S. R., & Cotîrlă, L-I. (2022). On τ-pseudo-v-convex κ-fold symmetric bi-univalent function family. Symmetry, 14(10), 1972. https://doi.org/10.3390/sym14101972
Swamy, S. R., & Cotîrlă, L-I. (2023). A new pseudo-type κ-fold symmetric bi-univalent function class. Axioms, 12(10), 953. https://doi.org/10.3390/axioms12100953
Swamy, S. R., Frasin, B. A., & Aldawish, I. (2022). Fekete-Szegö functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics, 10, 1165. https://doi.org/10.3390/math10071165
Wanas, A. K., & Raadhi, H. K. (2016). Maclaurin coefficient estimates for a new subclasses of m-fold symmetric bi-univalent functions. Earthline Journal of Mathematical Sciences, 11(2), 199-210. https://doi.org/10.34198/ejms.11223.199210
Wanas, A. K., & Tang, H. (2020). Initial coefficient estimates for a classes of m-fold symmetric bi-univalent functions involving Mittag-Leffler function. Mathematica Moravica, 24(2), 51-61. https://doi.org/10.5937/MatMor2002051K
Yalçin, S., Muthunagai, K., & Saravanan, G. (2020). A subclass with bi-univalence involving (p,q)-Lucas polynomials and its coefficient bounds. Bol. Soc. Mat. Mex., 26, 1015-1022. https://doi.org/10.1007/s40590-020-00294-z
This work is licensed under a Creative Commons Attribution 4.0 International License.