The $(\psi,\varphi)$-Generalized Weakly Reich Contraction Mapping Theorem
Abstract
In this paper we introduce a concept of $(\psi, \varphi)$-generalized weakly Reich contraction mapping and obtain a fixed point theorem. Some corollaries are consequences of the main result.
References
Kannan, R. (1969). Some results on fixed points. II. American Mathematical Monthly, 76(6), 405-408. http://dx.doi.org/10.1080/00029890.1969.12000228
Kannan, R. (1986). Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60(1), 71-76.
Chatterjee, S. K. (1972). Fixed point theorem. Comptes Rendus de l'Académie Bulgare des Sciences, 25(6), 727-730.
Alber, Y. I., & Guerre-Delabriere, S. (1997). Principle of weakly contractive maps in Hilbert spaces. In I. Gohberg (Ed.), New results in operator theory and its applications: The Israel M. Glazman memorial volume (Vol. 98, pp. 7-22). Birkhauser. http://dx.doi.org/10.1007/978-3-0348-8910-0_2
Choudhury, B. S. (2009). Unique fixed point theorem for weakly C-contractive mappings. Kathmandu University Journal of Science, Engineering and Technology, 5(1), 6-13. http://dx.doi.org/10.3126/kuset.v5i1.2842
Chandok, S. (2011). Some common fixed point theorems for generalized $f$-weakly contractive mappings. Journal of Applied Mathematics and Informatics, 29(1-2), 257-265. http://dx.doi.org/10.1016/j.camwa.2011.09.009
Khan, M. S., Swaleh, M., & Sessa, S. (1984). Fixed point theorems by altering distances between the points. Bulletin of the Australian Mathematical Society, 30(1), 1-9. http://dx.doi.org/10.1017/s0004972700001659
Aydi, H. (2013). On common fixed point theorems for $(psi,varphi)$-generalized $f$-weakly contractive mappings. Miskolc Mathematical Notes, 14(1), 19-30. http://dx.doi.org/10.18514/mmn.2013.399
This work is licensed under a Creative Commons Attribution 4.0 International License.