A New Generalization of the Inverse Distributions: Properties and Applications

  • Clement Boateng Ampadu 31 Carrolton Road, Boston, MA 02132-6303, USA
Keywords: inverse distribution, characterization theorem, hazard function


In this paper the generalized inverse distribution is defined. Some properties and applications of the generalized inverse distribution are studied in some detail. Characterization theorems generalizing the new family in terms of the hazard function are obtained. Recommendation for further study concludes the paper.


Ayman Alzaatreh, Carl Lee and Felix Famoye, A new method for generating families of continuous distributions, METRON 71 (2013), 63-79. https://doi.org/10.1007/s40300-013-0007-y

Mohammad A. Aljarrah, Carl Lee and Felix Famoye, On generating T-X family of distributions using quantile functions, J. Stat. Distrib. App. 1 (2014), Article No. 2. https://doi.org/10.1186/2195-5832-1-2

Amal Soliman Hassan, Elsayed Ahmed Elsherpieny and Rokaya Elmorsy Mohamed, Odds generalized exponential-inverse Weibull distribution: properties and estimation, Pak. J. Stat. Oper. Res. 14(1) (2018), 1-22.

J. A. Rodrigues, A. P. C. M. Silva and G. G. Hamedani, The exponentiated Kumaraswamy inverse Weibull distribution with application in survival analysis, Journal of Statistical Theory and Applications 15(1) (2016), 8-24. https://doi.org/10.2991/jsta.2016.15.1.2

Muhammad Shuaib Khan and Robert King, New generalized inverse Weibull distribution for lifetime modeling, Communications for Statistical Applications and Methods 23 (2016), 147-161. https://doi.org/10.5351/CSAM.2016.23.2.147

Abdulkareem M. Basheer, Alpha power inverse Weibull distribution with reliability application, Journal of Taibah University for Science 13(1) (2019), 423-432. https://doi.org/10.1080/16583655.2019.1588488

Broderick O. Oluyede and Tao Yang, Generalizations of the inverse Weibull and related distributions with application, Electronic Journal of Applied Statistical Analysis 7(1) (2014), 94-116. https://doi.org/10.1285/i20705948v7n1p94

C. Satheesh Kumar and Subha R. Nair, An extended version of Kumaraswamy inverse Weibull distribution and its properties, STATISTICA LXXVI(3) (2016), 249-272.

C. Satheesh Kumar and S. H. S. Dharmaja, Inverse Kies distribution: properties and applications, South African Statistical Journal 51(1) (2017), 45-65.

Ogunde Adebisi Ade, Chukwu Angela Unna and Agwuegbo Samuel Obi-Nnamdi, The characterization of the cubic rank inverse Weibull distribution, Asian Research Journal of Mathematics 16(7) (2020), 20-33. https://doi.org/10.9734/arjom/2020/v16i730200

I. Elbatal and Hiba Z. Muhammed, Exponentiated generalized inverse Weibull distribution, Applied Mathematical Sciences 8(81) (2014), 3997-4012. https://doi.org/10.12988/ams.2014.44267

Hassan M. Okasha, A. H. El-Baz and Abdulkareem M. Basheer, On Marshall-Olkin extended inverse Weibull distribution: properties and estimation using Type-II censoring data, J. Stat. Appl. Pro. Lett. 7(1) (2020), 9-21. https://doi.org/10.18576/jsapl/070102

Salman Abbas, Syed Ali Taqi, Fakhar Mustafa, Maryam Murtaza and Muhammad Qaiser Shahbaz, Topp-Leone inverse Weibull distribution: theory and application, European Journal of Pure and Applied Mathematics 10(5) (2017), 1005-1022.

Kawsar Fatima, Uzma Jan and S. P. Ahmad, Transmuted Weibull-inverse exponential distribution with applications to medical science and engineering, Progress in Nonlinear Dynamics and Chaos 6(1) (2018), 49-64.

B. O. Oluyede, B. Makubate, D. Wanduku, I. Elbatal and V. Sherina, The gamma-generalized inverse Weibull distribution with applications to pricing and lifetime data, Journal of Computations and Modelling 7(2) (2017), 1-28.

Arwa M. Alshangiti, M. Kayid and M. Almulhim, Reliability analysis of extended generalized inverted exponential distribution with applications, Journal of Systems Engineering and Electronics 27(2) (2016), 484-492. https://doi.org/10.1109/JSEE.2016.00051

D. Hinkley, On quick choice of power transformations, Journal of the Royal Statistical Series C (Applied Statistics) 26(1) (1977), 67-69. https://doi.org/10.2307/2346869

A. M. Abd AL-Fattah, A. A. EL-Helbawy and G. R. AL-Dayian, Inverted Kumaraswamy distribution: properties and estimation, Pak. J. Statist. 33(1) (2017), 37-61.

D. N. P. Murthy, M. Xie and R. Jiang, Weibull Models, Wiley Series in Probability and Statistics, John Wiley and Sons, New York, 2004.

D. K. Bhaumik, K. Kapur and R. D. Gibbons, Testing parameters of a gamma distribution for small samples, Technometrics 51 (2009), 326-334. https://doi.org/10.1198/tech.2009.07038

Haitham M. Yousof, Morad Alizadeh, S. M. A. Jahanshahi, Thiago G. Ramires, Indranil Ghosh and G. G. Hamedani, The transmuted Topp-Leone G family of distributions: theory, characterizations and applications, Journal of Data Science 15 (2017), 723-740.

Marcelino A. R. de Pascoa, Edwin M. M. Ortega and Gauss M. Cordeiro, The Kumaraswamy generalized gamma distribution with application in survival analysis, Statistical Methodology 8 (2011) 411-433. https://doi.org/10.1016/j.stamet.2011.04.001

Morad Alizadeh, Mahdi Rasekhi, Haitham M. Yousof and G. G. Hamedani, The transmuted Weibull-G family of distributions, Hacettepe Journal of Mathematics and Statistics 47(6) (2018), 1671-1689. https://doi.org/10.15672/HJMS.2017.440

Clement Boateng Ampadu, New Classes of Quantile Generated Distributions: Statistical Measures, Model Fit and Characterizations, Lulu Press Inc., 2020. ISBN: 9781678166670

Clement Ampadu, Results in Distribution Theory and Its Applications Inspired by Quantile Generated Probability Distributions, Lulu Press Inc., 2018. ISBN: 9780359249954

Abbas Mahdavi and Giovanna Oliveria Silva, A method to expand families of continuous distributions based on truncated distributions, J. Statist. Res. Iran 13 (2016), 231-247. https://doi.org/10.18869/acadpub.jsri.13.2.231

How to Cite
Ampadu, C. B. (2020). A New Generalization of the Inverse Distributions: Properties and Applications. Earthline Journal of Mathematical Sciences, 6(1), 33-63. https://doi.org/10.34198/ejms.6121.3363