Coefficient Bounds for a New Families of m-Fold Symmetric Bi-Univalent Functions Defined by Bazilevic Convex Functions

  • Bedaa Alawi Abd Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
Keywords: holomorphic functions, univalent functions, bi-univalent functions, m-fold symmetric bi-univalent functions, Bazilevic functions, coefficient estimates

Abstract

In this paper, we find upper bounds for the first two Taylor-Maclaurin $\left|a_{m+1}\right|$ and $\left|a_{2m+1}\right|$ for two new families $L_{\Sigma_m}(\delta, \gamma ; \alpha)$ and $L_{\Sigma_m}^{*}(\delta, \gamma ; \alpha)$ of holomorphic and $m$-fold symmetric bi-univalent functions associated with the Bazilevic convex functions defined in the open unit disk $U$. Further, we point out several certain special cases for our results.

References

Adegani, E. A., Bulut, S., & Zireh, A. A. (2018). Coefficient estimates for a subclass of analytic bi-univalent functions. Bull. Korean Math. Soc., 55(2), 405-413.

Aldawish, I., Swamy, S. R., & Frasin, B. A. (2022). A special family of m-fold symmetric bi-univalent functions satisfying subordination condition. Fractal Fractional, 6, 271. https://doi.org/10.3390/fractalfract6050271

Al-Shbeil, I., Wanas, A. K., Saliu, A., & Catas, A. (2022). Applications of beta negative binomial distribution and Laguerre polynomials on Ozaki bi-close-to-convex functions. Axioms, 11(10), Art. ID 451, 1-7. https://doi.org/10.3390/axioms11090451

Altinkaya, S., & Yalçin, S. (2018). On some subclasses of m-fold symmetric bi-univalent functions. Communications in the Faculty of Sciences, University of Ankara. Series A1, 67(1), 29-36. https://doi.org/10.1501/Commua1_0000000827

Amourah, A., Alamoush, A., & Al-Kaseasbeh, M. (2021). Gegenbauer polynomials and bi univalent functions. Palestine Journal of Mathematics, 10(2), 625-632. https://doi.org/10.3390/math10142462

Brannan, D. A., & Taha, T. S. (1986). On some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai Mathematica, 31(2), 70-77.

Bulut, S. (2016). Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turkish Journal of Mathematics, 40, 1386-1397. https://doi.org/10.3906/mat-1511-41

Duren, P. L. (1983). Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg, and Tokyo.

Frasin, B. A., & Aouf, M. K. (2014). Coefficient bounds for certain classes of bi-univalent functions. Hacettepe Journal of Mathematics and Statistics, 43(3), 383-389.

Hamzat, J. O., Oluwayemi, M. O., Lupas, A. A., & Wanas, A. K. (2022). Bi-univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points. Fractal Fract., 6, Art. ID 483, 1-11. https://doi.org/10.3390/fractalfract6090483

Khan, B., Srivastava, H. M., Tahir, M., Darus, M., Ahmad, Q. Z., & Khan, N. (2021). Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 6, 1024-1039. https://doi.org/10.3934/math.2021061

Koepf, W. (1989). Coefficients of symmetric functions of bounded boundary rotations. Proceedings of the American Mathematical Society, 105(1989), 324-329. https://doi.org/10.1090/S0002-9939-1989-0930244-7

Kumar, T. R. K., Karthikeyan, S., Vijayakumar, S., & Ganapathy, G. (2021). Initial coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions. Advances in Dynamical Systems and Applications, 16(2), 789-800.

Li, X. F., & Wang, A. P. (2012). Two new subclasses of bi-univalent functions. International Mathematics Forum, 7(2), 1495-1504.

Magesh, N., & Yamini, J. (2018). Fekete-Szego problem and second Hankel determinant for a class of bi-univalent functions. Tbilisi Mathematical Journal, 11(1), 141-157. https://doi.org/10.32513/tbilisi/1524276036

Murugusundaramoorthy, G., Magesh, N., & Prameela, V. (2013). Coefficient bounds for certain subclasses of bi-univalent function. Abstract and Applied Analysis, Art. ID 573017, 1-3. https://doi.org/10.1155/2013/573017

Prema, S., & Keerthi, B. S. (2013). Coefficient bounds for certain subclasses of analytic function. Journal of Mathematical Analysis, 4(1), 22-27.

Sakar, F. M., & Aydogan, S. M. (2018). Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions defined by convolution. Acta Universitatis Apulensis, 55, 11-21. https://doi.org/10.17114/j.aua.2018.55.02

Sakar, F. M., & Aydogan, S. M. (2019). Bounds on initial coefficients for a certain new subclass of bi-univalent functions by means of Faber polynomial expansions. Mathematics in Computer Science, 13, 441-447. https://doi.org/10.1007/s11786-019-00406-7

Sakar, F. M., & Canbulat, A. (2019). Inequalities on coefficients for certain classes of m-fold symmetric and bi-univalent functions equipped with Faber polynomials. Turkish Journal of Mathematics, 43, 293-300. https://doi.org/10.3906/mat-1808-82

Sakar, F. M., & Tasar, N. (2019). Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions. New Trends in Mathematical Sciences, 7(1), 62-70. https://doi.org/10.20852/ntmsci.2019.342

Sakar, F. M., & Wanas, A. K. (2023). Upper bounds for initial Taylor-Maclaurin coefficients of new families of bi-univalent functions. International Journal of Open Problems in Complex Analysis, 15(1), 1-9.

Srivastava, H. M., Eker, S. S., & Ali, R. M. (2015). Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat, 29, 1839-1845. https://doi.org/10.2298/FIL1508839S

Srivastava, H. M., Gaboury, S., & Ghanim, F. (2016). Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. Acta Mathematica Scientia. Series B. English Edition, 36, 863-871. https://doi.org/10.1016/S0252-9602(16)30045-5

Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009

Srivastava, H. M., Sivasubramanian, S., & Sivakumar, R. (2014). Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Mathematical Journal, 7(2), 1-10. https://doi.org/10.2478/tmj-2014-0011

Srivastava, H. M., Wanas, A. K., & Murugusundaramoorthy, G. (2021). Certain family of bi-univalent functions associated with Pascal distribution series based on Horadam polynomials. Surveys in Mathematics and its Applications, 16, 193-205.

Swamy, S. R., & Cotirla, L-I. (2022). On τ-pseudo-v-convex κ-fold symmetric bi-univalent function family. Symmetry, 14(10), 1972. https://doi.org/10.3390/sym14101972

Swamy, S. R., Frasin, B. A., & Aldawish, I. (2022). Fekete-Szego functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics, 10, 1165. https://doi.org/10.3390/math10071165

Tang, H., Srivastava, H. M., Sivasubramanian, S., & Gurusamy, P. (2016). The Fekete-Szego functional problems for some subclasses of m-fold symmetric bi-univalent functions. Journal of Mathematical Inequalities, 10, 1063-1092. https://doi.org/10.7153/jmi-10-85

Wanas, A. K., & Tang, H. (2020). Initial coefficient estimates for a classes of m-fold symmetric bi-univalent functions involving Mittag-Leffler function. Mathematica Moravica, 24(2), 51-61. https://doi.org/10.5937/MatMor2002051K

Yalçin, S., Muthunagai, K., & Saravanan, G. (2020). A subclass with bi-univalence involving (p,q)-Lucas polynomials and its coefficient bounds. Boletín de la Sociedad Matemática Mexicana, 26, 1015-1022. https://doi.org/10.1007/s40590-020-00294-z

Published
2023-11-11
How to Cite
Abd, B. A., & Wanas, A. K. (2023). Coefficient Bounds for a New Families of m-Fold Symmetric Bi-Univalent Functions Defined by Bazilevic Convex Functions. Earthline Journal of Mathematical Sciences, 14(1), 105-117. https://doi.org/10.34198/ejms.14124.105117
Section
Articles

Most read articles by the same author(s)

<< < 1 2 3 > >>