Differential Subordination and Superordination for Fractional Integral Involving Wanas Operator Defined by Convolution Structure

  • Abbas Kareem Wanas Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
  • Faiz Chaseb Khudher Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
Keywords: analytic function, differential subordination, differential superordination, convolution, fractional integral, Wanas differential operator


In present paper, we use fractional integral and Wanas differential operator to obtain some subordination and superordination results associated with Hadamard product for univalent analytic functions defined in the open unit disk. These results are applied to obtain differential sandwich results. Our results extend corresponding previously known results.


J. W. Alexander, Functions which map the interior of the unit circle upon simple region, Annals of Mathematics 17(1) (1915), 12-22. https://doi.org/10.2307/2007212

F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 27 (2004), 1429-1436. https://doi.org/10.1155/s0161171204108090

A. A. Attiya and M. F. Yassen, Some subordination and superordination results associated with generalized Srivastava-Attiya operator, Filomat 31(1) (2017), 53-60. https://doi.org/10.2298/fil1701053a

S. D. Bernardi, Convex and starlike univalent functions, Transactions of the American Mathematical Society 135 (1969), 429-446. https://doi.org/10.1090/s0002-9947-1969-0232920-2

T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. 35(2) (2002), 287-292. https://doi.org/10.1515/dema-2002-0209

N. E. Cho and M. K. Aouf, Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients, Turkish J. Math. 20 (1996), 553-562.

N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling 37(1-2) (2003), 39-49. https://doi.org/10.1016/s0895-7177(03)80004-3

I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, Journal of Mathematical Analysis and Applications 176(1993), 138-147. https://doi.org/10.1006/jmaa.1993.1204

S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.

S. Rahrovi, Subordination and superordination properties for convolution operator, Int. J. Nonlinear Anal. Appl. 6(2) (2015), 137-147.

G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013 (1983), 362-372. https://doi.org/10.1007/bfb0066543

T. M. Seoudy, Subordination and superordination results of p-valent analytic functions involving a linear operator, Bol. Soc. Paran. Mat. 35(2) (2017), 223-234. https://doi.org/10.5269/bspm.v35i2.21993

H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms and Special Functions 18(3) (2007), 207-216. https://doi.org/10.1080/10652460701208577

S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum 7(36) (2012), 1751-1760.

H. Tang and E. Deniz, Third-order differential subordination results for analytic functions involving the generalized Bessel functions, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), 1707-1719. https://doi.org/10.1016/s0252-9602(14)60116-8

B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, in: Current Topics in Analytic Function Theory (Edited by H. M. Srivastava and S. Own), 371-374, World Scientific, Singapore, 1992. https://doi.org/10.1142/9789814355896_0032

A. K. Wanas, New differential operator for holomorphic functions, Earthline Journal of Mathematical Sciences 2(2) (2019), 527-537. https://doi.org/10.34198/ejms.2219.527537

A. K. Wanas, Some subordination results for fractional integral involving Wanas differential operator, Earthline Journal of Mathematical Sciences 3(2) (2020), 199-205. https://doi.org/10.34198/ejms.3220.199205

A. K. Wanas and G. Murugusundaramoorthy, Differential sandwich results for Wanas operator of analytic functions, Mathematica Moravica 24(1) (2020), 17-28. https://doi.org/10.5937/matmor2001017k

Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput. 230 (2014), 496-508. https://doi.org/10.1016/j.amc.2013.12.065

How to Cite
Wanas, A. K., & Khudher, F. C. (2023). Differential Subordination and Superordination for Fractional Integral Involving Wanas Operator Defined by Convolution Structure. Earthline Journal of Mathematical Sciences, 12(1), 121-139. https://doi.org/10.34198/ejms.12123.121139