Generalized Guglielmo Numbers: An Investigation of Properties of Triangular, Oblong and Pentagonal Numbers via Their Third Order Linear Recurrence Relations

  • Yüksel Soykan Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
Keywords: generalized Guglielmo numbers, Tribonacci numbers, triangular numbers, triangular-Lucas numbers, oblong numbers, pentagonal numbers

Abstract

In this paper, we investigate the generalized Guglielmo sequences and we deal with, in detail, four special cases, namely, triangular, triangular-Lucas, oblong and pentagonal sequences. We present Binet's formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related with these sequences.

References

I. Bruce, A modified Tribonacci sequence, Fibonacci Quarterly 22(3) (1984), 244-246.

R. M. Castillo, A survey on triangular number, factorial and some associated numbers, Indian Journal of Science and Technology 9(41) (2016). https://doi.org/10.17485/ijst/2016/v9i41/85182

M. Catalani, Identities for Tribonacci-related sequences, 2012. arXiv:math/0209179

E. Choi, Modular Tribonacci numbers by matrix method, Journal of the Korean Society of Mathematical Education Series B: Pure and Applied Mathematics 20(3) (2013), 207-221. https://doi.org/10.7468/jksmeb.2013.20.3.207

J. H. Conway and R. K. Guy, The Book of Numbers, New York: Copernicus, 1996.

M. Elia, Derived sequences, the Tribonacci recurrence and cubic forms, Fibonacci Quarterly 39(2) (2001), 107-115.

M. C. Er, Sums of Fibonacci numbers by matrix methods, Fibonacci Quarterly 22(3) (1984), 204-207.

A. S. Garge and A. A. Shirali, Triangular numbers, Resonance 17 (2012), 672-681. https://doi.org/10.1007/s12045-012-0074-z

D. Kalman, Generalized Fibonacci numbers By matrix methods, Fibonacci Quarterly 20(1) (1982), 73-76.

W. R. Knorr, The Evolution of the Euclidean Elements, Dordrecht-Boston, Mass.: D. Reidel Publishing Co., 1975.

K. Kuhapatanakul and A. G. Shannon, Binomial coefficients and triangular numbers, European Journal of Mathematics and Statistics 2(3) (2021). http://dx.doi.org/10.24018/ejmath.2021.2.3.31

M. Lemma, D. Lemaitre and R. Edwards, The triangular numbers in actions, International Journal of Mathematics 4(11) (2021), 1-11.

P. Y. Lin, De Moivre-Type identities for the Tribonacci numbers, Fibonacci Quarterly 26 (1988), 131-134.

T. E. Moore, Some observations on Oblong numbers, Mathematical Medley 39(1) (2013), 29-32.

S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quarterly 26(2) (1988), 144-151.

A. Scott, T. Delaney and V. Hoggatt, Jr., The Tribonacci sequence, Fibonacci Quarterly 15(3) (1977), 193-200.

A. Shannon, Tribonacci numbers and Pascal's pyramid, Fibonacci Quarterly 15(3) (1977), 268 and 275.

N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org

Y. Soykan, Simson identity of generalized m-step Fibonacci numbers, Int. J. Adv. Appl. Math. and Mech. 7(2) (2019), 45-56.

Y. Soykan, Tribonacci and Tribonacci-Lucas Sedenions, Mathematics 7(1) (2019), 74. https://doi.org/10.3390/math7010074

Y. Soykan, A study on generalized (r,s,t)-numbers, MathLAB Journal 7 (2020), 101-129.

Y. Soykan, On the recurrence properties of generalized Tribonacci sequence, Earthline Journal of Mathematical Sciences 6(2) (2021), 253-269. https://doi.org/10.34198/ejms.6221.253269

W. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Quarterly 20 (1982), 118-120.

C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quarterly 10(3) (1972), 231-246.

N. Yilmaz and N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Applied Mathematical Sciences 8(39) (2014), 1947-1955. http://dx.doi.org/10.12988/ams.2014.4270

E.W. Weisstein, Polygonal Number, in: From MathWorld-A Wolfram Web Resource, https://mathworld.wolfram.com/PolygonalNumber.html

E. W. Weisstein, Pentagonal Number, in: From MathWorld-A Wolfram Web Resource, https://mathworld.wolfram.com/PentagonalNumber.html

Wikipedia, Pentagonal Number, in: From Wikipedia-A Web Resource, https://en.wikipedia.org/wiki/Pentagonal_number

Wikipedia, Polygonal Number, in: From Wikipedia-A Web Resource, https://en.wikipedia.org/wiki/Polygonal_number

Published
2022-02-16
How to Cite
Soykan, Y. (2022). Generalized Guglielmo Numbers: An Investigation of Properties of Triangular, Oblong and Pentagonal Numbers via Their Third Order Linear Recurrence Relations. Earthline Journal of Mathematical Sciences, 9(1), 1-39. https://doi.org/10.34198/ejms.9122.139
Section
Articles